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Abstract. A two-level domain decomposition method is introduced for general shape optimization problems constrained
by nonlinear partial differential equations. The problem is discretized with a finite element method on unstructured moving
meshes and then solved by a parallel two-level one-shot Lagrange-Newton-Krylov-Schwarz algorithm. Due to the pollution
effects of the coarse to fine interpolation, direct extensions of the one-level method to two-level do not work. To fix the
pollution problem, a pollution removing coarse to fine interpolation scheme is introduced in this paper. As applications, we
consider the shape optimization of a cannula problem and an artery bypass problem in 2D. Numerical experiments show that
our algorithm performs well on a supercomputer with over one thousand processors for problems with millions of unknowns.

1. Introduction. As large scale computers become readily available for everyday use, engineers and
scientists are not only interested in the detailed simulation of a physical process, such as a fluid flow, but
also more interested in the optimization of a physical process, such as finding a fluid flow with the smallest
energy dissipation [IT]. Optimization problems are, generally speaking, more complicated than simulation
problems and demand a lot more computing resources. Although many simulation algorithms and software
for incompressible flows scale well on supercomputers with thousands or more processors [6], highly scalable
algorithms and software for optimization problems constrained by the incompressible Navier-Stokes equations
are still to be developed. In this paper we consider the shape optimization problems with equality constraints:

{ min  F(u,a)

u,«

(L) st. C(u,a) =0,

where u is the state variable defined on the domain €2,, « is a variable that controls the shape of the
computational domain. F(u, «) and C(u, «) are referred to as the objective function and the state equation,
respectively. In shape optimization problems that we consider, the constraint is the stationary incompressible
Navier-Stokes equations. Such problems arise in many industrial applications, for example, aerodynamic
shape design [I3] [I7], artery bypass design [T}, 2], 22], and microfluidic biochip design [3]. The difficulty of
the problem is mainly due to the complicated constraints that have to be discretized on a sufficiently fine
and moving grid. Such computations often require large scale parallel computers for their memory capacity
and processing speed. In this paper, we introduce and study a parallel two-level one-shot Lagrange-Newton-
Krylov-Schwarz (LNKSz) algorithm for shape optimization problems.

To numerically solve the shape optimization problem , one can either apply an optimization approach
on the continuous level, e.g., the Lagrange multiplier method, to obtain the continuous optimal system and
then discretize and solve it, or one can discretize problem to obtain a finite dimensional constrained
optimization problem and then use a discrete optimization method to solve it. We focus on the latter
approach and denote the discretized shape optimization problem as
{ min  Fp(up, o)

up,x

(1.2)
st.  Cp(up,a) =0,

where h is a mesh size parameter. A common approach for solving the shape optimization problem (1.2)) is
the Lagrange multiplier method which first defines a Lagrange functional associated with (|1.2)
(1.3) Lh(uh,a,/\h) =Fh(uh,oz) +/\¥:Ch(uh,a),

where )y, is a Lagrange multiplier, and then differentiate it to obtain the Karush-Kuhn-Tuker (KKT) system

Vo, Ln(up,a,\p) = 0 the state equation,
(1.4) Vu, Ln(up,a, M) = 0 the adjoint equation,
Vo Lp(up,a,\p) = 0 the design equation.

One popular method for solving the nonlinear system ([1.4]) is the so-called nested analysis and design
(NAND) which solves the three equations in (1.4)) one at a time, similar to the nonlinear block Gauss-Seidel
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method [IL 2 17, 22]. The advantage of NAND is that one can apply well-developed state equation solvers
directly and it requires less memory. The disadvantage of the NAND is that the nonlinear Gauss-Seidel type
method often needs many iterations to converge, and sometimes, may not converge without using special
scaling. Moreover, in each step of the Gauss-Seidel iterations, the large state equations have to be solved
with sufficient accuracy and this is rather time consuming [23] 25]. In addition, the three components have
to be solved one after another; such a sequential approach is not desirable on machines with a large number
of processors. An alternative approach is the simultaneous analysis and design (SAND), or the so-called
one-shot method which solves the three equations in simultaneously by a nonlinear solver, e.g., Newton-
Krylov methods [3, 4, 12, 13]. The main challenges of SAND are that the corresponding Jacobian system
in the Newton step is very ill-conditioned and large but, in general, the method based on Newton-Krylov
with a good preconditioner is more robust than the method based on nonlinear Gauss-Seidel. To answer
the challenges facing in the one-shot methods, one needs to design a preconditioner that can substantially
reduce the condition number of the large fully coupled system and, at the same time, provides the scalability
for parallel computing.

We apply an overlapping domain decomposition method (DDM) to partition the large coupled opti-
mization problem into many independent subproblems. The scalability of DDM is well-studied for scalar
elliptic equations ([24]) and some Schwarz preconditioning for boundary control problems can be found in
[20, 21]. Through our numerical experiments, we find that the one-level Lagrange-Newton-Krylov-Schwarz
method works well for shape optimization problems when the number of processors is small, but when the
number of processors is large, unfortunately, the standard two-level method doesn’t work as expected be-
cause of the computational domain on the coarse-level is not exactly the same as the computational domain
on the fine-level. In this paper, we introduce a special interpolation method and a new two-level method
that works well for shape optimization problems. Some scalability studies of multilevel preconditioners for
boundary control problems can be found in [21], but as far as we know this kind of study has not been done
for shape optimization problems. Although both boundary control and shape optimization problems are
PDE-constrained optimization problems, the shape optimization problems are much more difficult than the
boundary control problems due to the change of the computational domain during the optimization process.

In shape optimization problems, the computational domain changes during the optimization process,
therefore one needs to generate a new mesh or allow the existing mesh to deform with the computational
domain at each iteration. These two strategies are called mesh reconstruction and mesh perturbation,
respectively. Mesh reconstruction often guarantees a good new mesh but is computationally expensive and
the mesh perturbation is cheaper but the deformed mesh may become ill-conditioned when the boundary
variation is large. In this paper, we focus on the mesh perturbation strategy where we only need to call the
mesh generator once before the parallel solver begins. Another advantage of the mesh perturbation method is
that when it is used together with an overlapping domain decomposition method the mesh topology doesn’t
change, so we can reuse the partition of the initial mesh for the entire computation. A common technique
of mesh perturbation is to treat the mesh as a network of fictitious linear springs modeled by a system of
Laplace’s equations [10].

—-Aéy = 0 in Qomv
(1.5) { be = ga on O

where Jx is the grid displacement and g, = (gZ,g¥%) is the displacement on the boundary. Note that g,
is not a given function, but a function obtained computationally during the iterative solution process. For
more moving mesh strategies see, e.g., [I7]. We denote the discretized form of (1.5 as

(1.6) Dy, (6x,, @) = 0.

In our one-shot method, the mesh variable dx, is treated as an optimization variable and the moving
mesh equations (|1.6) are viewed as constraints of the optimization problem which are solved simultaneously
with the other equations. Putting (1.2)) and (|1.6|) together, we obtain a new discretized optimization problem

min  Fp(up, b, , @)
uh;6Xh7a
Ch(llh,éx}“a) = Oa
(1.7) s.t. { D (6, ) = 0.
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We denote the KKT system of ((1.7) as
(1.8) Gp(Xp) =0,

where X, = (up, 0x,, @, A\p, AY) and A¥ is the Lagrange multiplier for the moving mesh equations.

2. Two-level inexact Newton method with a modified boundary layer interpolation. In this
section, we introduce a two-level inexact Newton method for solving the nonlinear KKT system . In the
method, the initial guess for solving the fine grid nonlinear system is obtained by: (1) solving a coarse
grid problem; (2) modify part of the coarse grid solution near the moving boundary layer; and (3) interpolate
the solution to the fine grid. Since Newton type methods can be quite sensitive to the initial guess, our
new approach can often reduce the number of Newton iterations and in some cases reduce significantly the
number of linear iterations needed inside the Newton steps.

The two-level inexact Newton method begins with constructing an analogous system on the coarse grid

(2'1) GH(XH) =0

and then solves the nonlinear system (2.1) with an inexact Newton method globalized by a line search
method. After the problem (2.1)) is solved, we interpolate the coarse grid solution Xy to the fine grid, i.e.,

X9 =1 Xy,

where I/ Z is a non-standard coarse to fine interpolation operator to be defined shortly. Finally we solve the
fine grid problem using an inexact Newton method with the initial guess X9.

The coarse to fine interpolation operator I I}?I is a N x Ny matrix, where Ny, and Ny are the degrees of
freedom on the fine grid and the coarse grid, respectively. We first define the standard interpolation operator
I (a Nj x Ny matrix) which has the components

(2.2) (I})ij = & (x5,),

e., the value of the j*" coarse grid function ¢7, at the 7" fine grid point xi. In practice the function
QS{LI(X) doesn’t have to be the same as the finite element basis function used to generate the coarse-level
problem, in fact, we use here a multiquadric radial basis function [7]. We tested some other interpolation
methods and found that the radial basis function based interpolation method is more efficient for our problem.
Unfortunately, the initial guess X interpolated from the coarse-level solution X using the interpolation
matrix does not reduce the initial residual of the fine-level problem as expected. There are two reasons
for the failure of the standard interpolation. First, the Lagrange multiplier A} has a sharp jump at the
moving boundary which the interpolation operator can not catch on the coarse grid. To catch this
jump, we introduce a method that is similar to the “pollution removing technique” of [2I]. Second, the
value of A¥ on the moving boundary decreases following the mesh refinement. To illustrate the situation, we
take the derivative of the coarse-level Lagrangian functional Ly (Xg) and fine-level Lagrangian functional
Ly (X}) with respect to the design variable «

— 0gZ(xYy) —y 0g¥(xYy) [CRA S
2.3 N, 2\ H) | NY TS\ RH) ) P Y
(23) ; ( B e T RH T g 2 da’
o 08a(xh) | v 0gi(x}) BoJ
2.4 X a\Th/ 4 N a\"h - P2
(24) ; < L B A Oa 2 0o’
where Xz , and Xz/ n (1=1,2,---,n?) are the Lagrange multipliers related to the mesh displacement 0z, , and
8y, (i=1,2,---,n7) on the moving boundary of fine grld nj, is the number of d,, , and x! is the coordinate

of the node associated with 6, , . )\f H> /\z >, N and x%; are values on the coarse grid. Comparing the two

equations (2.3)) and , the right-hand side and the coefﬁ01ents of )\Z hs )\z s )\Z g and )\Z g are functions
of o that are supposed to change very little from ) to , but because ny > ny, we actually have
Al’h < )\Z»H and )\Z’h < )\Z,H. The standard 1nterpolat10n operator does not respect this phenomenon.
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In order to fix the problem, we modify the components of the interpolation operator (2.2)) related to the
e A

Lagrange multipliers A; , and )\z » by dividing a factor v = nf /n%,. As a summary, the modified interpolation

operator is defined as

(2.5) I = Ry (Il — Zp Il (T — Zy)),

where the operator Z, is a Ny x N, diagonal matrix (on the fine grid). The component (Z});; is zero if the
index i is for Xih or Xih (i=1,2,---,n,), otherwise is one. Zy is similarly defined as Z; (on the coarse
grid) [21]. Iy is a Ny x Ny identity matrix and Rj, is a Nj, X Nj, diagonal matrix with the components
(Rn)ii = % if the index ¢ is for th or th (i =1,2,---,ny), otherwise is one. Fig. gives an example of
the cross section of the coarse solution, the solution interpolated by , the solution interpolated by the
modified boundary layer interpolation operator , and the fine solution of A} near the moving boundary.
We show by numerical experiments that the modified interpolation operator works very well for the
problem under consideration.

Coarse solution Interpolated solution (unmodified) Interpolated solution (modified) Fine solution
® ?

F1G. 2.1. An example of a cross section of the coarse solution, the unmodified interpolated solution, the modified interpo-
lated solution and the fine solution of Aj mear the moving boundary. The right most point is the boundary point. The black e
is the grid point on the coarse gird and the black X is grid point on the fine gird. The dashed curve is the solution function
and the cyan e and the red X on the solution curve are the values of the solution function on the coarse grid point and fine
grid point, respectively.

The overall two-level inexact Newton algorithm is described as follows:
Algorithm Two-level IN:
Step 1. e Given an initial guess X9, and solve the coarse grid problem using the following
inexact Newton method
e For k=0,1,--- until convergence do:
e Find d¥ such that

(2.6) I B (M)~ (M dE) + Gl 1< | Gl |

o Set Xk =Xk 4 rkdk,
Step 2. e Interpolate the coarse solution Xy to the fine grid: X?L = f?IXH
e Moving the initial fine mesh to match the changed computational domain by solving
the mesh equations with the boundary condition obtained on the coarse grid
Step 3. e Solve the fine grid problem @ using the following inexact Newton method with the
initial guess X9
e For k=0,1,--- until convergence do:
o Find d’fL such that

(2.7) 1B (M)~ (M dR) + G (< iy || G |

e Set XE'H = XF + 7Fdf
Here HY, and HY are the Jacobian matrix of the nonlinear system (2.1)) and (1.8), respectively, G% =
Gu(X%), GF = G(XF), 7F and 7} are selected by a cubic line search method, n§, and 7} are the stopping
conditions of the linear solvers for the coarse and fine problems, respectively, and (M’;i,)_1 is a one-level
Schwarz preconditioner and (MF)~! is a two-level Schwarz preconditioner to be defined in the next section.

3. One-level and two-level Schwarz preconditioner. We write the Jacobian system in each Newton
step introduced in the previous section as

Hx =b.
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To define the Schwarz preconditioner, we need an overlapping partition of 2,. Since the mesh topology

doesn’t change when the shape of the domain changes, we obtain the partition using the initial mesh on €, .

We first partition the domain €., into non-overlapping subdomains Q,,, { =1,---, N, and then extend each

subdomain 2,, to le by including § layers of elements belong to its neighbors, i.e., 4, C Qil. Here N, is

the number of processors which is equal to the number of subdomains and ¢ represents the overlap size.
The one-level restricted additive Schwarz preconditioner (RAS) [8] is defined as

NP
(3.1) M, = > (R))"H; 'R},

=1
where H; is a submatrix which is the restriction of H to the overlapping subdomain le and R? is a restriction
matrix which maps the global vector of unknowns to those belonging to the subdomain le by simply extract
the unknowns that lie inside the subdomain Qil. This is equivalent to assuming homogeneous Dirichlet
boundary conditions for all variables on the interior part of the boundary of the overlapping subdomain.
RY, which is similar to Rf, only extracts the unknowns associated with the non-overlapping subdomain €2,
and makes those in the extended subregion le\Qal vanish. The one-level preconditioner works well when
the number of processors is small, however, when the number of processors is large the Jacobian solver
converges very slowly and sometimes does not converge at all. This is because the condition number s of
the preconditioned matrix satisfies (for elliptic systems with sufficient regularity) [24]

C(1+H/S)
<——,
H

where H is the subdomain diameter, § is the overlap size and C is a constant independent of H and §. The

(3.2)

1 /FQ term in implies that the number of iterations of the Jacobian solver increases with the number
of subdomains. Our problem is not elliptic, but the performance of the preconditioner does show a similar
dependence on 1 /Fz. To improve the convergence rate, we introduce a coarse-level preconditioner M.
The two-level hybrid Schwarz preconditioner M, is obtained by multiplicatively combining the coarse-level

two

preconditioner M, ! and the fine-level preconditioner M.}, defined in (3.1)). In other words, the application

one

of My, to a vector can be written in the following two steps

(3.3) y = I5M; (1) T,

(3.4) M, x =y + ML (x - Hy).

two one

The two-level preconditioner has better convergence because the condition number k of the preconditioned
matrix satisfies (at least for elliptic problems) [24]

(3.5) k< C(1+H/5),

which shows that the number of iterations of the Jacobian solver is independent of the number of subdomains.
Both (2.6) and (3.3]) are linear problems on the same coarse grid and solved by a parallel GMRES with a
one-level additive Schwarz preconditioner or a parallel sparse LU factorization.

4. Numerical experiments. The algorithm introduced in the previous sections is applicable to general
shape optimization problems. In this section we consider a class of shape optimization problems governed by
the stationary incompressible Navier-Stokes equations defined in a two-dimensional domain €2, and apply
them to cannula optimization and artery bypass design problems. We consider

min  J,(u, @) = 2/QL/Q e(u):e(u)dedy + g/l(a”(s))zds

subject to
—pAu+u-Vu+Vp = f in Qom
V-u = 0 in Qa,
u = g on Finleta
(4 1) u = 0 on Fwall:
du
‘uai —m-n = 0 on Foutleta
n
a(a) 21, a(b) = z,
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optimized

inle

|
YD
outlet

FiG. 4.1. Simplified model for a blood flow cannula of an artificial heart device; The red boundary Uoptimizeqd denotes the
part of the boundary whose shape is to be determined by the optimization process.

where u = (u,v) and p represent the velocity and pressure, n is the outward unit normal vector on the
domain boundary 992, and g is the kinematic viscosity. The first term of the objective function J, describes
the energy dissipation in the whole flow field, where e(u) = £(Vu + (Vu)?) is the deformation tensor for
the flow velocity u, and the last term of the objective function is a regularization term which provides the
regularity of the boundary of the domain €, where § is a nonnegative constant and I = [a, b] is an interval
in which the shape function a(s) is defined. In some approaches [I], [I4], some restrictions of the geometry
are included in the constraints instead of a regularization term in the objective function. In this paper, we
use a regularization term as in [I1]. The first five equations of the constraints in are the stationary
incompressible Navier-Stokes equations and boundary conditions. I'jnier, Ioutier and I'yqn represent the
inlet, outlet and wall boundaries, respectively and I'optimizeq, Which needs to be designed, is also a wall
boundary for the velocity u; see Fig.[f.1} f is the given body force and g is the given velocity at the inlet
Tiniet. The last two equations of the constraints in are used to restrict the optimized boundary to be
connected to the rest of the boundary, where z; and 2z, are two given constants [I1]. We use a LBB-stable
Q2 — @ finite element method to discretize problem on a unstructured moving mesh and, Q- finite
element method for the moving mesh equations (|1.5)).

Our solver is implemented using PETSc [5]. All computations are performed on a Dell PowerEdge C6100
supercomputer. Meshes are generated with CUBIT [I9] and partitioned by ParMETIS [I5]. The purposes of
the numerical experiments are to understand the convergence and the parallel scalability of the algorithm.
Special attention is paid to the performance of the domain decomposition preconditioner which is the key
component of the one-shot approach. In all experiments, the Jacobian matrix is constructed analytically
and the Jacobian system is solved by a right-preconditioned GMRES method. In the additive Schwarz
preconditioner, the subdomain problems are solved with a sparse LU factorization. The overlapping size §
is understood in terms of the number of elements; i.e., § = 8 means the overlap is 8 layers of elements.

4.1. Cannula optimization. Our first example is a simplified model for a blood flow cannula of an
artificial heart device [14] shown in Fig.u The fluid enters horizontally from left, undergoes a 90° bend,
and exits vertically downward. It is assumed that the thickness of the cannula is fixed. The goal is to design
the shape of the cannula such that the energy dissipation of the fluid in the entire computational domain
Q, is minimized. For simplicity, we let the body forces f = 0 in the Navier-Stokes equations (4.1). The
boundary condition on the inlet I';,;¢¢ is chosen as a constant v;,, no-slip boundary conditions are used on
the walls T'yai (Doptimizea 1 & wall boundary for the velocity u) and on the outlet boundary T'oyier the
free-stress boundary conditions are imposed; see . We use a polynomial function r(0) = Z?:l 0,
with d = 5 to represent the centerline of the cannula (see the dashed line in Fig.[4.1)) whose shape is to be
determined by the optimization process. Other shape functions can be used, but here we simply follow [I].

In the first test case, we set the Reynolds number Re = L“—L" to 500, where L = 1.0 is the cannula
diameter, v;, = 5.0 is the inlet velocity and g = 0.01 is the kinematic viscosity. We solve the problem on a
mesh with about 14,000 elements and 4.7 x 10° DOFs. Fig. shows the velocity distribution of the initial
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Fia. 4.2. Velocity distribution of the initial shape (left) and the optimal shape (right) for the cannula design. Here 8 = 5.0
and Re = 500.

TABLE 4.1
A comparison of the two-level Schwarz method (Two-S), the two-level inexact Newton method (Two-N) and the one-level
method (One) for the cannula design. Here B = 10, Re = 500, DOF(fine) = 1.1 x 108 and DOF(coarse) = 7.0 x 10*. In
the one-level method: 6 = 8; in the two-level inexact Newton method: dp, = 8 and d = 4; in the two-level Schwarz method:

op =0 and 6y = 2.

np 32 36 64 72 128 144
One 6 6 6 6 6 7
Newton Two-N 4 4 4 4 4 4
Two-S 4 4 4 4 4 4
One 229.83 258.33 345.00 340.00 471.83 498.00
GMRES Two-N | 139.50 147.75 194.75 203.75 248.75 270.25
Two-S 61.25 65.25 73.25 71.50 88.75 91.00
One 756.92 751.93 498.01 439.32 353.49 350.97
Time Two-N | 481.44 434.72 272.89 249.66 173.03 176.06
Two-S 345.80 310.58 223.46 191.49 180.25 161.79
One 0 0 0 0 0 0
Time ratio Two-N | 3.3% 3.9% 3.9% 4.2% 4.4% 4.5%
(coarse/fine) | Two-S | 19.5% 25.5% 46.5% 46.0% 66.2% 67.6%

(left) and optimal shapes (right). The energy dissipation of the optimized shape is reduced by about 22.4%
compared to the initial shape.

Table compares the one-level inexact Newton method (One), the two-level inexact Newton method
(without any two-level linear preconditioning) (Two-N) and the two-level Schwarz method (plus two-level
inexact Newton) (Two-S). In the rest of this paper, without special mention, the two-level Schwarz method
refers to the two-level Schwarz plus the two-level inexact Newton method. In all the tables, the headings
“Newton”, “GMRES” and “Time” refer to the number of Newton iterations, the average number of GMRES
iterations per Newton and the total compute time in seconds, respectively. “Time ratio (coarse/fine)” refer
to the percentage of the total time spent on solving the coarse-level problem. “Linear” and “Nonlinear”
refer to the coarse linear problem and the coarse nonlinear problem (2.1)), respectively. DOF(fine)
and DOF (coarse) refer to the degrees of freedom on the fine-level and coarse-level, respectively. 4y, is the
overlap size on the fine-level and dy is that on the coarse-level. From Table we see that the parallel
scalability for all the methods is good when the number of processors is not large. This table also shows
the interesting effect of the two-level inexact Newton approach, namely it reduces not only the number of
Newton iterations, but also the number of GMRES iterations. Table [£.2] presents the results of the two-level
Schwarz method for a larger problem which the one-level method can not deal with, and from these tables
we see that the two-level methods are more efficient than the one-level method and the two-level Schwarz
method is the most efficient among all methods.

We mention here that the coarse preconditioner in the two-level Schwarz method, i.e., M ! in ,
is solved by a parallel GMRES with a one-level additive Schwarz preconditioner in this subsection. For
tests to be presented in the following subsection, we will solve this by a parallel sparse LU factorization
SuperLU_DIST [16].

4.2. Artery bypass problem. In this section we study an application of the algorithm for a simplified
artery bypass problem [I] as shown in Fig.[4.3] The basic assumption is that there is a complete blockage in
the artery, and a bypass needs to be built. Without the blockage, the flow is supposed to go from AB to IJ,
but now we assume that the artery is blocked at DE and the flow has to go through C'H. For simplicity,
the thickness of C'H is fixed. Similar to the first example, the goal is to find the best shape of the bypass
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TABLE 4.2
Two-level Schwarz method for the cannula design. Here DOF(fine) = 7.5 x 10 and DOF(coarse) = 1.2 x 10°. The
other parameters are ép, =0, g = 2, Re = 500 and B = 10.

Newt GMRES Time Time ratio (coarse/fine)
P ewton Fine Coarse Total Coarse | Linear Nonlinear
256 5 150.40 50.81 3222.46  240.55 5.5% 0.8%
512 5 159.20 45.79 959.68 209.89 | 16.6% 3.1%
1024 6 190.33 45.55 626.54 354.42 48.3% 5.3%
optimized
E 12 ,: i O r H FW’ll[[ I
ALC T ST brr .
wall wall T H Ie) N
T inlet wall a el ! o 1—‘wn/I ottt
Bi E) G J

: [

Fic. 4.3. Simplified two-dimensional bypass model; the red boundary T optimizea denotes the part of the boundary whose
shape is to be determined by the optimization process. Here Iy = 6.0, lo = 3.0, I3 = 1.9, d1 = 0.6, and |AB| =0.8.

CH, such that the energy dissipation of the fluid in the entire computational domain €, is minimized. All
boundary conditions and solver parameters are chosen to be the same as in the first example.

Fig.[f4] shows the streamline of the initial and optimal shapes. Table [4.3] shows the performance of
the two-level Schwarz method. Interestingly, from this table, we see that the average number of GMRES
iterations per Newton step is nearly a constant for different number of processors, which matches the con-
vergence theory of the two-level Schwarz method for elliptic problems with sufficient shape regularity
even though our problem is not elliptic. The speedup of the two-level Schwarz method for the artery bypass
design problem is shown in Fig.[.5] The two-level Schwarz method shows nearly superlinear speedup with
up to 1536 processors. In Table we present some comparisons of performance for different coarse grid
sizes.

5. Concluding remarks. In this paper, we developed a parallel two-level domain decomposition
method for shape optimization problems and studied in details for the two-dimensional shape optimiza-
tion problems governed by incompressible Navier-Stokes equations. The one-level method is relatively easy
to develop, but the standard two-level method does not work for shape optimization problems due to the
pollution effects of the coarse to fine interpolation. To fix the problem, we introduced a modified boundary
layer coarse to fine interpolation operator which works very well for the shape optimization problems. We
tested the algorithm for a cannula design problem and an artery bypass design problem in 2D with more
than nine million unknowns. The numerical experiments showed that the two-level method has a superlinear
speedup with up to 1536 processors. Finally, we would like to mention that all elements of the algorithm
can be extended to three-dimensional general shape optimization problems, and we plan to further test the
algorithm and software on machines with larger number of processors.
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TABLE 4.3
Two-level Schwarz method for the bypass design. Here §;, = 0, Re = 300, and 8 = 50.

n Time Time ratio (coarse/fine
Fine pCoarse Newton | GMRES Total Coarse | Linear (Nonlinear )
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DOF(fine) = 9.8 x 10° and DOF(coarse) = 1.6 x 10°
384 60 7 157.43 2665.08  238.89 6.5% 2.1%
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TABLE 4.4

1536

The effect of various choices of the size of the coarse mesh for the bypass design. Here DOF (fine) = 9.8 x 108, §, = 0,
Re = 300, and 8 = 50.

Time Time ratio (coarse/fine)
DOF(coarse) | Newton | GMRES Total Coarse | Linear Nonlinear
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