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Abstract. Tomosynthesis imaging provides a viable alternative to computed tomography (CT)
and has obtained significant interest from the medical community as a means for diagnostic radiol-
ogy and radiation therapy. In digital tomosynthesis imaging, multiple projections of an object are
obtained along a small range of different incident angles in order to reconstruct a 3D representation
of the object. In this paper we discuss the implementation details of the polyenergetic digital breast
tomosynthesis reconstruction algorithm in a GPU using OpenCL. We describe three different algo-
rithm implementations: a serial implementation, a GPU implementation threaded by functionality
of the model, and a GPU fused kernel implementation which is threaded to increase performance,
throughput, and GPU utilization in the application. We show that the explicit kernel fusion achieves
significant speed-up in the reconstruction process of a clinical size patient data set, from running
over 100X faster than the version threaded by functionality to 200X faster than the serial approach.
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1. Introduction. In digital tomosynthesis imaging, multiple projections of an
object are obtained along a small range of different incident angles in order to recon-
struct a 3D representation of the object. This technique is of relevant interest in breast
imaging screening since it requires less radiation and a shorter acquisition period than
a CT breast scan, which obtains projections of the object around a full 360◦ rotation
[2, 3]. In addition, breast tomosynthesis imaging can ultimately provide more details
as a screening technology than a standard mammography, since mammography takes
a single 2D projection of the object and many features could be missed [12] . An
example of the imaging device for breast tomosynthesis imaging can be seen in Figure
1. Here we have a rotating x-ray source that can take 2D projections of the breast
at different incident angles, typically about 15 to 30 projections in a range of about
±15◦. The size of the detector can be about 1280 by 2048 pixels and the size of the
resulting reconstruction of the object is about 50 to 70 slices (depending on the height
of the object) each slightly smaller in size than the detector.

The multiple 2D projections obtained as the source rotates allow for more infor-
mation to be used in the reconstruction process and a more accurate representation
of the object. However, more input data greatly increases the size of the problem and
managing this amount of data in the reconstruction algorithm can be an issue, as most
of the reconstruction process becomes memory bound. Direct and naive approaches
to implement the tomosynthesis reconstruction can be costly in both memory and
time. Since these results are meant to be used in a clinical setting, it is unfeasible to
allow reconstruction algorithms to run for hours or days, physicians must be able to
make a timely diagnosis to their patients.

In this paper we describe the implementation details of the polyenergetic digital
breast tomosynthesis reconstruction process using a single GPU to accelerate com-
putations. We focus on efficient handling of memory communication and increasing
computational performance to achieve the best results. The paper is organized as
follows: Section 2 describes the polyenergetic mathematical model and the iterative
solver used in the reconstruction process. This section recounts the work presented by
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Fig. 1.1. Example of the imaging device for breast tomosynthesis imaging.

Chung, Nagy and Sechopoulos in [1] and extends their process to a quadratic model
approach. Section 3 discusses in detail three implementations of the reconstruction
algorithm, a serial approach, a threading by functionality approach, and a fused kernel
approach, all written in C++ and running on a GPU using OpenCL [10]. Section 4
presents numerical results of all three implementations and shows that a fused kernel
approach is the most effective in our tomosynthesis reconstruction. Section 5 outlines
our conclusions and future work on the subject.

2. Reconstruction Framework. In this section we discuss the mathematical
model for the problem and the iterative solvers proposed to generate the 3D recon-
structions. Tomosynthesis reconstruction is a nonlinear inverse problem, where the
goal is to approximate the true volume from the given set of projection images of the
object. In order to do this we must have a physically accurate model of the forward
problem, like the polyenergetic model, and a well suited iterative solver. This section
briefly outlines the work presented by Chung, Nagy and Sechopoulos in [1]

2.1. The Mathematical Model. In modeling the forward problem for the
image acquisition process, it is important to take into account the polyenergetic source
spectrum. Previous approaches assume that the x-ray source is monoenergetic, i.e.
all incident photons have the same energy level (see [1] for a discussion of previous
approaches). This assumption results in beam hardening, which occurs when there
is absorption of low-energy photons from the x-ray by the object, thus changing the
average energy of the x-ray beam. Severe artifacts can appear in the reconstruction
using a monoenergetic model.

The image acquisition model for the breast tomosynthesis problem can be de-
scribed as:

b
(θ)
i =

∫
ε

ρ(ε)e
−

∫
Lθ

µ(ε,x)dl
dε+ η

(θ)
i , i = 1 : Np and θ = 1 : Nθ(2.1)

where Np is the number of pixels in the detector, Nθ is the number projections ob-
tained by rotating the x-ray source to a new position, ε represents the spectrum of
energies that are emitted by the source x-ray beam, which can range, for example,
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from 10keV to 28keV, ρ(ε) is the product of the x-ray energy with the number of in-
cident photons at that energy, Lθ is the line on which the x-ray beam travels through
the object, µ(x, ε) is the attenuation coefficient dependent on both energy of the x-ray

beam and the material composition of the object at position x, and η
(θ)
i represents

any additional noise during the acquisition process.
The continuous model can then be discretized using Nv voxels and Nε discrete

energy levels to obtain:

b
(θ)
i =

Nε∑
e=1

ρ(e) exp

−
Nv∑
j=1

µ(e)(j)a
(ij)
θ

+ η
(θ)
i , i = 1 : Np and θ = 1 : Nθ(2.2)

The new quantity a
(ij)
θ represents the length of the x-ray beam that passes through

voxel j and contributed to pixel i for incident angle θ. We can collect these a
(ij)
θ

quantities to construct the Np × Nv matrix Aθ to simplify notation.
Now consider the attenuation coefficients µ(e). Each voxel in the true object is

interpreted as a composition of glandular tissue, adipose tissue, or the two combined.
Thus we can use the percentage of glandular tissue present in the voxel to quantify
the constitution of the reconstructed voxel. This quantity is known as the percentage
glandular fraction and is related to the energy-dependent attenuation coefficients of
the voxel through an algebraic transformation [4]. Having this quantification of the
material composition of the object, we can model the attenuation coefficient for each
voxel as:

µ(e)(j) = h(e)(g
(j)
true)

2 + s(e)g
(j)
true + z(e)(2.3)

for j = 1 : Nv, where g
(j)
true represents the glandular fraction in voxel j of the ”true”

object and h(e), s(e) and z(e) are known energy-dependent fit coefficients determined
as described in [1]. This formulation of µ(e) combined with the discretization of the
problem in equation (2.2) allows us to write each projection image acquired as:

b(θ) =

Nε∑
e=1

%(e)exp
[
−h(e)Aθg

2
true + s(e)Aθgtrue + z(e)Aθ1

]
+ η(θ),(2.4)

for i = 1 : Np and θ = 1 : Nθ. Here we have the exponential function applied
component-wise, gtrue and g2

true are vectors whose corresponding jth entries are

(g
(j)
true)

2 and g
(j)
true respectively, and 1 is a vector of all ones.

2.2. Iterative Reconstruction Process. The reconstruction of the 3D volume
from the given 2D projections in tomosynthesis is a numerical optimization problem,
where we find the maximum likelihood estimator (MLE) of the Poison-based likelihood
function stemming from the image acquisition model shown in (2.4) see [1]. The
expected value of the measured data is

b̄
(i)
θ + η̄

(i)
θ =

Nε∑
e=1

%(e)exp
(
−h(e)aTi g

2 + s(e)aTi g + z(e)aTi 1
)

+ η̄
(θ)
i(2.5)

where aTi is the ith row of Aθ and η̄
(θ)
i represents error which is assumed to follow

a Poisson distribution whose statistical mean is known. This allows us to write the
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negative log likelihood function as:

−Lθ(g) =

Np∑
i=1

(b̄
(i)
θ + η̄

(i)
θ ) − b

(i)
θ log(b̄

(i)
θ + η̄

(i)
θ ) + c(2.6)

for all θ where c is a constant and g is the unknown volume. We then use a gradient
descent method [6,8] to solve:

gMLE = min
g

{
Nθ∑
θ=1

−Lθ(g)

}
(2.7)

3. Implementation. In this section we discuss the implementation and com-
putational aspects of the reconstruction process in digital breast tomosynthesis. The
reconstruction algorithms are all implemented in objective C++ using template code
for single and double precision. The GPU implementation uses the OpenCL frame-
work [10].

The implemented reconstruction process is a gradient descent algorithm [6,8] seek-
ing to minimize the negative log likelihood function shown in equation (2.7). As we
are looking for gMLE it is clear that equation (2.7) must be evaluated several times
in the reconstruction process. The most computationally intense part of the function
evaluation are the dot products in equation (2.5) or, equivalently, the matrix-vector
product in equation (2.4). The size of matrix Aθ is the number of pixels in all pro-
jections by the number of voxels in the reconstruction, which translates to millions
of rows by billions of columns. Computing this matrix-vector product explicitly is
not realistic, we need three matrix products per function evaluation and two matrix
transpose-vector products per derivative evaluation. We discuss alternate ways to
compute this product and ways to optimize the reconstruction process even further.

3.1. Matrix Product Optimizations. To compute the matrix-vector products
with Aθ and ATθ we note that the matrix is large, sparse and each of its entries has

a physical meaning in our reconstruction. Each a
(ij)
θ represents the length of the x-

ray beam that passes through voxel j and contributes to pixel i for incident angle θ.
This is a well-known matrix in radiation therapy, where computing the matrix-vector
product with Aθ is known as a raytrace and computing the matrix-vector product with
ATθ is known as a back projection. These products can be computed very efficiently
using the algorithm developed by Siddon [13].

The first step we take to optimize the performance of the tomosynthesis recon-
struction process is to implement an efficient version of the raytracing algorithm to
compute the matrix-vector products. Siddon’s algorithm [13] is much more efficient
than an explicit matrix-vector product but it poses two major drawbacks: a sorting
procedure at its core and a large amount of memory for temporal variables. These
two issues can be a problem for CPU implementations but pose an even greater chal-
lenge for GPU computing. M. de Greef et al [7] devised a different version of Siddon’s
algorithm for radiation therapy applications that is GPU friendly, it eliminates the
need for sorting and reduces the amount of memory for local variables to fit in the
limited global memory of a GPU. We use a modified version of their approach to
compute the matrix-vector products in our algorithm, reducing the amount of time
in computing the products by at least a third in the CPU case (we did not implement
Siddon’s algorithm [9] on a GPU). In addition, we gain speed-ups in the computation
of the matrix-vector products by performing them as Aθ[u v w] and ATθ [x y] in one
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function call as opposed to having three separate function calls in the first case and
two function calls in the second case.

3.2. Serial Implementation. We begin by describing the serial implementa-
tion of the reconstruction algorithm as a point of comparison for our GPU approaches.
The algorithm scheme for the serial case is described in Approach 1 of Figure 3.1. We
begin each gradient descent iteration by a function evaluation (equation 2.7) which is
a three step process. First we compute the the matrix-vector multiplications needed
for equation (2.5), then we apply the quadratic fit using the coefficients h(e), s(e) and
z(e) from equation (2.5), and finally we perform the summations over all pixels and
all angles in Equations (2.6) and (2.7). After we complete the function evaluation, we
begin to compute the derivative of the function in two steps. First we compute the
matrix transpose-vector products needed and then we compute the derivative using
a linear combination of the two product results. We do a line search to guarantee
descent of the function and then start the gradient iteration with a new starting g.
The process is repeated until we are unable to guarantee descent in the value of the
function.

3.3. Functional Kernel Implementation. The first approach to accelerate
the performance of the reconstruction algorithm using a single GPU is to thread the
application for functionality, that is, create a kernel for each computationally intensive
portion of the process and allow the device to run that portion before continuing the
process. Here we use OpenCL to run the computations. The choice to use OpenCL
as opposed to CUDA [9] was solely based on portability, we would like the code to be
as accessible as possible to all clinical settings. We have a CUDA implementation in
the works and all of our experiments are run using Nvidia cards.

Profiling the serial code shows that the reconstruction algorithm spends the ma-
jority of the time computing the matrix-vector products. Even as optimized by using
the modification of Siddon’s algorithm [7, 13], the matrix-vector product (raytracing)
in serial is very computationally intensive. However, it can be noted that the raytrac-
ing algorithm is well suited for the threading capabilities of a GPU. Ultimately, we
are following the geometry of the x-ray beam as it passes through the object and is
contributing to each pixel in the detector. For a particular incident angle θ we can
parallelize the raytrace by considering each pixel in the detector a single GPU thread.
Each thread can then trace the angle from the source along the object and determine
the extent of the contribution from the x-ray beam to its value in the detector. Each
thread only needs to know the simple geometric set-up of the problem, the incident
angle at which the beam approaches, and the attenuation of the voxels in the object
(this is the vector by which Aθ is being multiplied), all other variables are local to
the thread. There is no thread communication or synchronization needed, other than
the starting geometry of the problem which can be loaded into global space and then
moved to the shared space of each work group (or thread block). Since each thread
will be ultimately computing a single output value for the pixel corresponding to its
thread ID in the execution model, there is no chance of a race condition or data
hazards.

Having the set-up described above of how to implement a single Aθu multipli-
cation, we can modify it slightly to compute Aθ[u v w]. The only thing we need is
enough memory in the global space of the GPU to fit all three vectors u, v and w.
Then we can have each thread calculate three output values, as if we had the same ray
going through three different volumes and landing in three different detectors. The
thread is responsible for following the ray, take into account the attenuation of each
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volume u, v and w, and report as output the value of the pixel corresponding to the
thread ID at each of the three detectors.

Finally, to complete this implementation we note that we must compute Aθ[u v
w] for all θ (usually between 15 to 30 angles). This presents us with two alternatives:
compute each Aθ[u v w] individually in the GPU, or compute all products Aθ[u v w]
for θ = 1 : Nθ at once in the GPU. Memory traffic between the CPU and GPU over
the PCIe bus is expensive and we want to avoid the GPU sitting idle waiting for a
new vector. The geometry details remain the same through all Nθ multiplications; the
only value that changes is the single value for the incident angle at which the x-ray
beam approaches. Here we can take advantage of the 3D execution topology that
GPU computing offers. We can use the third dimension to represent each incident
angle. Now each thread will query its incident angle after it obtains the geometry
parameters and perform its required raytracing calculations.

With all these optimizations we can then compute three matrix-vector products
for all incident angles with one single GPU function call. The matrix transpose-
vector product (back projection) follows a similar approach. In this case, we let each
voxel constitute an individual GPU thread responsible for determining its value based
on the given projection images. Approach 2 of Figure 3.1 shows the new algorithm
scheme, now moving all matrix-products to the GPU.

3.4. Kernel Fusion Implementation. After moving all matrix-products to
the GPU we are able to attain some speed-ups in our reconstruction. However, we still
can optimize the approach even further. Profiling the new reconstruction shows that
the algorithm is now spending minimal time computing the matrix-vector products,
but we have a new bottle neck as we apply the fit coefficients to the results of the
GPU, see equation (2.5). Applying the fit coefficients, summing over all energies in
equation (2.5), and summing over all pixels in equation (2.6) is a memory bound
computation. We have a triple nested loop, the inner loop goes over all voxels (order
of a billion), the outer loop goes over all energies (order of ten), the outside loop goes
over all pixels (order of a million). Loading this triple loop into the GPU is not an
option, since even within the core of the loop we still have memory bound operations
to update the variables.

A viable approach is to enhance the raytracing kernel we have running, since its
output consists of all three quantities aTi g

2, aTi g and aTi 1. Keeping these quantities
in the device, we can load the fit coefficients into the GPU (given we have sufficient
memory available) and perform the fit inside the kernel. In addition, we can use the
exponential function provided by the OpenCL standard to compute the exponential

portion. Now the output of the kernel is the vector b̄
(i)
θ + η̄

(i)
θ from equation (2.5).

Once the kernel execution is completed, all we have is a single loop over all pixels in
the CPU which can run significantly faster since it is only three lines of memory bound
computations that use the CPU cache to hide memory latency. We call this a kernel
fusion implementation because we have fused the nested loops into one kernel call as
opposed to having two separate kernels for the matrix product and the application of
the fit coefficients to the data.

One final optimization we have included in this approach is that CPU-GPU com-
munication during the reconstruction process is absolutely minimal. The kernel calls
for both the raytracing and back projection operation are almost identical since in
both cases we just need to communicate to the geometry of the problem and the nec-
essary vectors to the device. We have created a function call prior to the beginning of
the reconstruction to load all necessary variables into the global memory of the GPU.
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This leads to only having to transfer the necessary vectors to the device at the time
of enqueueing the kernel. Now this approach spends most of the computation time
running in the GPU and allows for much faster line search computations. There is
no additional optimizations needed by profiling the code because, as can be seen in
the next section, we are performing clinical size patient reconstructions in under five
minutes.

4. Numerical Results. In this section we show timings for our numerical ex-
periments using the three implementations described in the previous section. The
reconstructions run in objective C++ and OpenCL for the GPU case. We use the
Nvidia Tesla c2070, which has 6GB of global memory for the larger size problems.
For the smaller reconstruction we use the Nvidia GeForce GT330M.

Figure 4.1 shows the results of using a single function call for three matrix-vector
products versus each product performed at a time. The bottom row shows the re-
sults for two matrix transpose-vector products performed in a single function call as
opposed to one individual product performed. There is a significant speedup in com-
puting Aθ[u v w] versus Aθu, Aθv, and Aθw on their own. Computing Aθ[u v w]
takes longer than computing Aθu because we have additional overhead costs when
we reference three different objects in three separate detectors as described in Section
3.3. The same results holds for the back projection computation.

Figure 4.2 shows the computation time for each portion of a single gradient it-
eration. Note that the GPU time is computed using the fused kernel approach. For
the fused kernel approach implementation, we consider the ray trace plus function
evaluation loop as one kernel call as described in Section 3.4. In this case, the ray
trace timing is shown to compare with the function evaluation loop timing reported.
The function evaluation loop accounts for the ray trace in its computation time. This
table shows how both bottle necks in the reconstruction process have successfully been
eliminated.

Figure 4.3 shows the results of the a full reconstruction for three different prob-
lem sizes. This reconstruction takes about three gradient iterations. Note that the
most significant speed-up is achieved in the last case which is the full size patient
reconstruction. We would explain the greater speedup in the larger case as enough
computational need for the GPU to compensate for the memory transfer between the
CPU and GPU in the reconstruction algorithm. A slice from the reconstruction is
shown in Figure 4.4. The reconstruction is that of a phantom used to simulate a
breast.

5. Conclusions. In this paper we have discussed the major implementation
details for the digital breast tomosynthesis problem. We have developed three ap-
proaches to solve the problem, a serial implementation, an implementation threaded
for functionality, and a fused kernel approach using OpenCL [10]. We have shown
that the bottle necks of the application are the matrix-vector products and the triple
nested loop in the function evaluation. Avoiding an explicit matrix-vector product
and using an alternative to Siddon’s algorithm [13] we can compute fast matrix-vector
products on a GPU. By fusing the function evaluation loops and extending the fuc-
tionality of the raytracing kernel we reduce the bottle neck created by the memory
bound computations of the function evaluation. Allowing minimal communication
between CPU and GPU also reduces the time the GPU sits idle. Using all these
performance optimizations, we have shown that fused kernel approach attains the
best performance, as it reconstructs the full clinical size data 135X faster than the
threaded for functionality approach and 200X faster than the serial implementation.
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Fig. 3.1. Algorithm Reconstruction Schemes

Future work on the subject includes finishing a CUDA [9] implementation of the ap-
plication for additional portability and further exploration of the mathematical model
for better image quality results.
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