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A methodology is proposed for constructing algebraic multigrid (AMG) transfer
operators. A key feature of the approach is generality as it can be applied
to nonsymmetric systems, can emphasize accuracy for different user-defined
modes, and can incorporate a variety of coarsening strategies and grid transfer
sparsity patterns. The basic concept centers on approximation of idealized Schur
complement-based grid transfers via a Galerkin projection. To explain the idea,
consider the solution of the matrix equations

Au=1b (1)

via an algebraic multigrid algorithm. Let P and R represent prolongation and
restriction matrices respectively and now examine the equations

AP =0 and RA=0. 2)

Obviously, only trivial solutions are obtained if A is square and nonsingular and
no restrictions are placed on P and R. As in classical AMG, let the vertices be
partitioned into two sets. The c-point set corresponds to vertices that remain
on the next coarsest level while all other vertices are in the f-point set. These
sets induce a partitioning of P and R:

=(Ry R.) and = (?‘) (3)

It is easy to show that idealized Schur complement-based grid transfers are ob-
tained if we restrict the solution spaces so that P, = I and R. = I and if we
enforce zero residuals only at f-points. That is, (AP); = 0 and (RA); = 0.
More generally, this can be formulated as a Galerkin process where spaces for
solutions and residuals define a projection of (2). While Schur complements
are generally not computationally attractive, we investigate other test and trial
spaces for residuals and solutions. In particular, spaces are discussed which
limit the sparsity pattern of the grid transfers while ensuring that a few modes



(e.g. constants) are accurately transferred. We then illustrate that these spaces
lead to practical and efficient AMG grid transfer operators which can be com-
puted by a few iterations of a Krylov process. The final algorithm is closely
related to energy minimizing algebraic multigrid ideas (where the minimization
properties of the Krylov method implicitly define minimization properties and
norms associated with the grid transfer basis functions), but it is also suitable
for nonsymmetric systems.

Numerical results are given to demonstrate flexibility/adaptability and to high-
light how this mathematical flexibility leads to some interesting possibilities
for AMG software. Examples are taken from applications in fluid flow, semi-
conductor modeling, and ice sheet fracture. These includes cases where grid
transfers with irregular sparsity patterns are needed as well as some challenging
nonsymmetric linear systems.



