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The problem of finding the trace of the inverse of a large, sparse matrix A ap-
pears in many applications, including lattice quantum chromodynamics (LQCD),
data mining, and uncertainty quantification. When the dimension of A, N , is
sufficiently small, the problem is trivially solved by direct factorization methods.
For large N , where factorization of A is not possible, the problem is surprisingly
difficult, and all current approaches resort to a Monte Carlo method, based on
the following: Given x ∈ ZN

2 , i.e., random vectors of 1,−1,

E(xTA−1x) = Tr(A−1).

A model algorithm generates a list of s vectors, and either solves a series of linear
systems of equations, or computes directly a series of Gaussian quadratures
(xTA−1x). Because of the rate of Monte Carlo convergence, several hundreds
of systems need to be solved to obtain even a single digit of accuracy. The need
for algorithmic improvements at any level is obvious.

Our driving application is LQCD, where the matrix structure is based on a
four dimensional torus-lattice. In our previous work, we focused on speeding
up the systems with multiple right hand sides using deflation of a large number
of eigenvectors which are obtained with negligible additional cost to solving the
linear systems. Because of the large number of required right hand sides, we
showed speedups up to an order of magnitude.

In this research we focus on the orthogonal issue of the quality of the right hand
sides. We seek sequences of vectors that are provide better approximations than
random vectors.

Over the last ten years there has been quite some interest in this topic. Bekas,
Kokkiopoulou, and Saad discussed algorithms that use the Hadamard low dis-
parity vectors that work well for matrices with certain diagonal structure. They
also discussed probing which is our focus below. Recently, Avron and Toledo
did a study of various random vector choices. Tang and Saad, also discussed a
method based on probing.
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Probing is a method for obtaining the diagonal (or the trace) of a sparse matrix.
If the graph of the sparse matrix is k colorable, consider the set of k vectors
X = [x1, x2, ..., xk], where xj

i = 1 if node i has color j, and zero otherwise. It
is not hard to see that Tr(A) = Tr(XTAX). For example, in LQCD where the
4-D lattice is 2-colorable, only two vectors would suffice to find its trace. The
problem, however, is that we need Tr(A−1), which in general is a dense matrix.

Bekas et al. and Tang et al. exploited the fact that for a large class of PDE
based matrices, the elements of the A−1 decay exponentially away from the non
zero elements of A. Therefore, the largest elements of A−1 are on the same
sparsity pattern as A, which for the LQCD case is 2-colorable. Thus with 2
vectors we get a rough approximation of Tr(A−1). To improve this, we have to
consider a “denser” approximation of A−1, specifically the values of A−1 on the
sparsity pattern of A2. This is known as the distance-2 coloring of the graph of
A. If this approximation is not satisfactory, we can continue up to Am, obtain
a k-coloring of its graph, and use the X as defined above to obtain the trace.
This is the approach followed by Tang and Saad. However, such approach is
wasteful as all computations performed up to step m− 1 must be discarded.

In this work, we attempt to avoid this waste; at step m we build on top of
what we have already computed in steps 1, ...,m − 1. However, we are faced
with the problem that the vector subspace X(m−1), computed from the k(m−1)

colors needed for Am−1, may not be contained in the subspace X(m) for the
next step. Therefore, previous computations cannot be reused in X(m)TAX(m).
We address this problem by considering a hierarchical graph coloring of Am.
We start with the bipartite, red-black partitioning of A (for LQCD). Then we
consider a subset of the graph of A2 on the red partition only. We color it with
kr colors. Then, we color the black partition subset of the A2 with kb colors.
We can now build X(2) with kr + kb vectors, which by construction also span
X(1). Thus, only the complement space needs to be used. To avoid expensive
orthogonalization, we can identify the complement based on a judicious use of
Hadamard vectors.

A concern with the above method is that the number of colors for any Am is
larger than the minimum (chromatic number of Am). We are currently investi-
gating how much larger this can be, in particular for a regular lattice. However,
it is unclear whether this is a real disadvantage, as the sparsity structure of
Am is used only as an approximation to A−1. In fact, more vectors yield more
accurate results.

We will discuss also two variants of this method. First, it is not necessary to
start with a red-black ordering of A, as we know that more vectors will be
needed. We can start with a k coloring of Am (say for m = 2 or 3), and then
apply the hierarchical graph coloring. Second, we can stop the hierarchical graph
coloring at a certain distance-m, i.e., Am. If more accuracy is needed, each of the
vectors in X(m) can be extended with the regular sequence of Hadamard vectors,
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or with random vectors, if we want to remove the bias from the deterministic
approximation.
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