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In several inverse problems that arise from geophysical applications, such as
identifying the contaminant source from time history of spatially distributed
contaminant measurements, the prevalent approach is to use the Geostatistical
approach with Gaussian priors. There are two main computational bottlenecks
in the large-scale implementation of this approach: (1) covariance matrices that
arise from finely spaced discretizations on irregular grids, can be extremely large
and moreover, dense. (2) for certain problems with a large number of measure-
ments, the measurement operator is not only dense, forming it explicitly would
require the repeated solution of (possibly) time-dependent partial differential
equations. In this talk we propose to show, how to deal with each one of these
issues.

The covariance matrices that arise in practice, are extremely large and dense
and this usually places a heavy burden both in terms of storage and compu-
tational requirements. Covariance kernels which are stationary and translation
invariant, discretized on a uniformly spaced, regular grid, result in Toeplitz (or
Block-Toeplitz) matrices. Toeplitz matrices can be embedded inside circulant
matrices, for which operations such as matrix-vector products, matrix-matrix
products can be efficiently computed using Fast Fourier Transforms (FFT).
However, their primary deficiency is that these algorithms don’t extend very
easily to other types of grids that are predominant in realistic problems. Covari-
ance matrices, although dense, have special structure which can be exploited.
They are similar to dense matrices that arise from the discretization of inte-
gral equations. Using the Hierarchical matrix approach, we will show how to
reduce the storage and computational complexity of matrix-vector products to
O(N logN), where N is the number of unknowns that we are solving for.

Then, using Bayes’ rule, we can write down the posterior probability distribution
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of the unknowns, given the measurements, and assuming a Gaussian prior for
the unknowns. The maximum a posteriori (MAP) estimate can be computed
by solving the system of equations. We propose to use a matrix-free Krylov
subspace approach to solve the resulting system of equations. This approach
has a huge computation advantage because it avoids the explicit construction
of the matrix and only relies on matrix-vector products, which can be acceler-
ated using the Hierarchical matrix approach. We also propose a preconditioner
that serves to cluster the eigenvalues and therefore reduce the number of iter-
ations taken by the iterative solver. We will also provide numerical evidence
for the clustering of the eigenvalues. Another important aspect of the Geosta-
tistical approach is that, it not only allows us to obtain the best estimate via
maximizing the likelihood, we can also quantify the uncertainty associated with
our estimate. This can be done by generating conditional realizations from our
posterior probability distribution of the unknowns. We show how to do this
efficiently by using Chebyshev matrix polynomial approximation for the square
root of the covariance matrix, to compute unconditional realizations and using
these unconditional realizations to generate conditional realizations by solving a
modification of the system of equations used to compute the MAP estimate. Fi-
nally, we demonstrate the performance of our algorithm on a large-scale inverse
model problem on unstructured grids from contaminant source identification.
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