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Quantifying uncertainties in computational simulations is a key challenge for
predictive computational science. An important task within uncertainty quan-
tification is the propagation of input data uncertainty to the corresponding
simulation output quantities of interest. While many uncertainty propagation
approaches have been investigated throughout the literature, many of these
approaches involve sampling the simulation at a prescribed set of values for
the input data. For example, Monte Carlo methods require evaluation of the
simulation at random realizations of the input data, whereas stochastic colloca-
tion and non-intrusive polynomial chaos methods require evaluations on either
structured or unstructured grids. In each of these cases, a large number of
samples can be required when high accuracy is required, the space of uncer-
tain input data has high dimension, or the simulation quantities of interest lack
regularity with respect to the uncertain input data. If the simulations them-
selves are computationally expensive, the large number of samples can lead to
intractable uncertainty quantification problems. Thus significant improvements
can be made by reducing the number of samples required and reducing the cost
of evaluating the simulation on an ensemble of input data realizations.

To this end, we pursue two approaches to reducing the cost of sampling-based
uncertainty propagation methods. The first is adjoint enhancement whereby
gradients of quantities of interest are computed alongside response values. Of-
ten the gradient with respect to an arbitrarily large number of input parameters
can be computed in a small multiple of the time required for a single simula-
tion, if the simulation code has an intrusive adjoint propagation capability.
The challenge is designing uncertainty propagation approaches that incorporate
gradient information effectively to reduce the overall number of samples. We
present several techniques based on gradient enhancement of global orthogonal
polynomial expansions and local and global interpolants, where the gradients
are computed by automatic differentiation techniques. These adjoint-enhanced
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approaches can then be embedded within adaptive collocation procedures that
estimate anisotropy or sparsity.

Second, we investigate reducing the cost of computing multiple simulation sam-
ples by propagating batches of them together. For large-scale simulation codes
involving Newton-type nonlinear solvers for both steady-state and implicit time
integration, this involves computing a sequence of residual vectors and Jacobian
matrices for each sample, and then solving each linear system. For these meth-
ods, we leverage template-based generic programming techniques to intrusively
evaluate multiple residuals/Jacobians together. This can significantly improve
vectorization and data locality making the cost of propagating N samples sig-
nificantly less than N times the cost of one sample. Furthermore, because the
Jacobian matrices are relatively small perturbations from one another, we ex-
plore reusing a single preconditioner over a range of samples. This amortizes the
cost of preconditioner construction which can be a significant contribution for
large-scale computations. Finally, we apply Krylov basis recycling to accelerate
convergence for families of linear systems. Recycling solvers target the solution
of slowly changing sequences of linear systems, and reuse information generated
from solving previous systems in the sequence to accelerate convergence for the
next system in the sequence.

To demonstrate the effectiveness of these techniques, they are applied to large-
scale uncertainty propagation problems in fluid dynamics that are representative
of a class of challenging problems in multi-physics simulation. For solving the
linear systems arising from discretizing the fluid dynamics problem, we pursue
application of block-preconditioners which have good parallel scalability prop-
erties but are expensive to construct.
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