
Boyana Norris
Automatic Kernel Acceleration of PETSc Krylov Solvers

MCS Division
Bldg 240
Rm 2152

Argonne National Laboratory
9700 South Cass Avenue

Argonne
IL 60439

norris@mcs.anl.gov

Cherkuri Choudary
Deepan Balasubramanian

Jeswin Godwin
Daniel Lowell

Azamat Mametjanov
Boyana Norris

P. Sadayappan, Gerald Sabin, Sravya Tirukkovalur

In the last few years, the use of accelerator architecture in both desktop and
high-performance platforms has been rapidly increasing. Crays XK6 systems
have a hybrid architecture using NVIDIA Graphics Processing Units (GPUs),
and in a similar spirit, Intel has created the Many Integrated Core (MIC) archi-
tecture codenamed Knights Corner. Developing software for such heterogeneous
architectures has become increasingly important, but requires significant exper-
tise and development effort. Furthermore, the code developed and optimized for
one accelerator or MIC architecture is generally not easily portable to another.
One approach that addresses this challenge is to define code transformations
that enable the same reference implementation of an algorithm to be ported to
multiple platforms. An extension of this approach is to enable users to express
an algorithm in a high-level language, which can then be transformed auto-
matically into multiple low-level source code representations for execution on
different accelerator architectures. Examples of low-level target codes include
C with OpenMP directives or CUDA C kernels.

Krylov subspace solvers are widely used iterative methods for solving large,
sparse, linear systems of equations, with implementations provided by a num-
ber of popular numerical toolkits such as the Portable Extensible Toolkit for
Scientific Computation (PETSc). PETScs open-source, extensible, and modular
framework allows computational scientists or other library developers to create
new or modify existing solvers as needed.

The implementation of a Krylov solver for execution on a GPU platform takes

1



place within the framework of PETSc vector and matrix data types. PETSc
has several GPU implementations of iterative solvers such as the Generalized
Minimum Residual Method (GMRES). These implementations use PETScs vec-
tor and matrix data structures, but implement the algorithms by calling GPU
libraries external to PETSc. These libraries are provided by different CUDA
toolkits (e.g., the CUSP and THRUST libraries). The delegation of control to
GPU libraries provides a modular design which hides the lower level implemen-
tations on the GPU, leaving the algorithm developer free to use the familiar
high-level operations. This black-box approach is often suboptimal because the
presence of multiple library calls hampers locality-exploiting optimizations of
low-level kernels. Our transparent implementation of vector and matrix types
keep intact the modular design of PETSc while allowing the developer full access
to the tuning of low-level operations.

We explored a number of optimizations in our vector and matrix data structures,
including GPU global memory alignment, reduction of data transfers between
the host and the device, and maximizing GPU utilization. Examples of these op-
timizations include asynchronous streaming kernels and memory calls, pipelined
reductions of large array operations, use of dynamically allocated shared mem-
ory, register offloading of global memory, and pinned host memory. The goal of
this exploratory step was to create the data structures and support functions
that can serve as templates for automated code generation and tuning of the
core kernel operations of a Krylov iterative solver.

After obtaining kernel templates, we began developing code transformations of
C-based implementations to CUDA C-based optimized versions. These trans-
formations were developed within the optimizing autotuner Orio. Orio is a
recently developed, extensible, and portable software generation framework for
empirical performance tuning. It takes annotated C or Fortran source code as in-
put, performs different performance-tuning transformations on the internal code
representation, generates multiple code variants corresponding to the different
transformations, empirically evaluates the performance of the generated codes,
and selects the best-performing variant using several popular heuristic search
algorithms. Orio annotations consist of semantic comments that specify the
computation and optionally, the transformations to perform. A separate tuning
specification contains various parametrized performance-tuning directives and
bounds of optimization space to search. In addition to the general-purpose tun-
ing directives, such as loop fusion and unrolling, tiling, and scalar replacement,
Orio supports a number of architecture-specific optimizations (e.g., generating
calls to SIMD intrinsics on Intel and Blue Gene/P architectures). Orio is imple-
mented in Python and can be dynamically extended by placing new language
modules (containing implementations of parsing, transformation, and code gen-
eration interfaces) into the canonical path. Typically, most of the execution time
is spent in loops; hence, we have extended Orios Loop module, which provides
a C-like syntax for specifying array-based computations. The extension parses
user-provided GPU transformation directives and generates CUDA kernels for

2



execution on GPU devices. The annotated loops are replaced by CUDA-specific
resource marshaling for parallel execution (e.g., data transfer, memory alloca-
tion, and thread layout) and unmarshaling upon the conclusion of the GPU
computation.

The proposed generation of kernels allows us to create a testbed for generat-
ing and tuning iterative solver implementations and testing them within the
PETSc framework, including benchmarking the performance of new GPU im-
plementations against existing ones. We will present a detailed comparison of
the performance of our approach and existing manually-tuned and library-based
PETSc CPU and GPU implementations.

Future work includes enabling the developer to use vectors and (sparse) matrices
as base types and support code generation and tuning for a core set of linear
algebra operations. For example, instead of explicitly iterating over index vector
elements in, say an AXPY operation, one can specify just y = y + alpha * x.
Other future work includes implementing more complex kernel code generation,
integrating more aggressive optimizations into the generated kernel variants,
and accelerating other solvers.

3


