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Parameter estimation, inverse problems, and optimal control problems frequently
appear in physical applications and can be cast as constrained optimization
problems with partial differential equation constraints. In particular, we are
interested in solving discretized optimization problems of the form

min f(u,v)
U
subject to  g(u,v) =0,

where the state variable u is the solution to the discretized partial differen-
tial equation defined by g and parametrized by the design variable v, and f
is the discretized objective function, whose form depends on the application.
Examples include estimating the porosity and permeability parameters from
observables such as the piezometric head at monitoring wells for reactive flows,
to applications in optical tomography and electromagnetic imaging.

In this talk, we will discuss the linearly-constrained augmented Lagrangian
method available in the Toolkit for Advanced Optimization (TAO) for solving
PDE-constrained optimization problems. This method computes the direction
in two phases, a Newton direction to reduce the constraint violation and a
reduced-space direction to improve the augmented Lagrangian merit function.
The reduced-space direction is computed from a limited-memory quasi-Newton
approximation to the reduced Hessian matrix. This method requires a minimal
amount of information from the user to solve the optimization problem. The
computational time for the method is dominated by computing the necessary
directions using iterative methods and preconditioners supplied by the user for
solving the linearized forward and adjoint problems. The parallel performance
is strongly influenced by the parallel performance of these solves.

To evaluate the performance of our linearly-constrained augmented Lagrangian
method, we use the Haber-Hansen test problems, which include elliptic, parabolic,



and hyperbolic partial differential equations, and their corresponding discretiza-
tions. We implemented parallel versions of these applications in the Toolkit for
Advanced Optimization to investigate the scalability of the method on high-
performance architectures. Results from these studies will be presented.

Our algorithms and test problems are available in the latest release of the Toolkit
for Advanced Optimization, which also includes methods for derivative-free op-
timization, unconstrained and bound-constrained optimization problems using
derivative information, and complementarity problems and variational inequal-
ities on high-performance architectures.



