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Least squares rank among the most fundamental problems in Scientific Com-
puting, Signal Processing, and Statistics. Over the years, numerous variants of
the problem have been studied. A variant, which has attracted much attention
in recent years, is:

Box-constrained Integer Least Squares (BILS): Given integers m,n >
0, a subset of integers Q, matrix H ∈ Rm×n, and y ∈ Rm, return x ∈ Qn

minimising ‖y −Hx‖2.

The solving BILS to optimality is hard, in a number of precise senses. Notably,
it is NP-hard to approximate within any constant factor [?]. We present an
iterative solver for the problem, based on novel convex programming relaxations.
Such relaxations strengthen the least squares relaxation, obtained by omitting
the integrality constraints. In each iteration, a small number of violated valid
inequalities are added, and the relaxation is reoptimised.

There have been proposed numerous convex programming relaxations of BILS.
(See Table ?? in the Appendix.) They seem to be, however, either too expensive
to compute (e.g. high-dimensional semidefinite programming), or too weak
(e.g. linear programming). We propose a hierarchy of progressively stronger
relaxations in second order-cone programming (SOCP):

min cTx (1)

‖Aix+ bi‖2 ≤ c
T
i x+ di, i = 1, . . . ,m

Ax = b,

Notice that solving a SOCP is only moderately more expensive than solving a
linear program, but allows one to express the least-squares objective.
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Our relaxations are based on the reformulation attributed to Atamtürk:

min
x∈Qn

‖y −Hx‖ (2)

= min
x∈Qn

xTHTHx− 2yTHx+ yT y (3)

= min
x∈Qn,t∈Rn

tT tHx− y ≤ t, y −Hx ≤ t (4)

= min
x∈Qn,t0∈R,t∈Rn

t0|y −Hx| ≤ t, tT t ≤ t0. (5)

By removing the constraint x ∈ Qn in the original problem (2), we would
obtain the usual least squares relaxation. By removing the same constraint in
the reformulated problem (5), we obtain the single-cone SOCP relaxation:

zr = min
x∈Rn,t0∈R,t∈Rn

t0|Hx− y| ≤ t, tT t ≤ t0. (6)

This relaxation (6) can be strengthened by the addition of violated valid inequal-
ities (“cuts”), including variants of Chvátal-Gomory cuts [?] and mixed-integer
rounding (MIR) cuts [?].

Let us define the Conic Mixed Integer Rounding (MIR) function. For 0 ≤ f ≤ 1,
the conic rounding function φf : R→ R is:

φf (a) =

{
(1− 2f)n− (a− n) if n ≤ a ≤ n+ f ,

(1− 2f)n+ (a− n)− 2f if n+ f ≤ a ≤ n+ 1.

The extension to vectors is element-wise. For pure integer programs (6) and
α 6= 1, the conic rounding cut hence is:

n∑
j=1

φfα(aj/α)− φfα(b/α) ≤ t/|α|.

It is easy to see that for α 6= 1 and fα = b/α − bb/αc, conic rounding cuts
are valid for pure integer programs (6). With each cut added, we obtain a new
relaxation.

The choice of a cut has to take into account its violation and numerical safety
[?]. After adding at most three cuts in a row, the newly obtain relaxation is
optimised, possibly using the previous solution. The optimisation of the second-
order cone program is, again, performed using an iterative method, such as the
primal-dual interior point method. The complexity of each iteration of the
interior point method is dominated the complexity of a matrix inversion of a
(m + c) × (n + m + 1) matrix, where n,m are the dimensions of the original
matrix H, and c is the number of cuts added. The appendix details promising
computational performance of this approach.

This approach lead to the development of low-power application specific inte-
grated circuits for the problem, which is of great importance in mobile com-
munications. There are systolic digital designs for much of the interior point

2



method already available. This could be seen as an extension of Boyd’s notion
of real-time convex programming to real-time integer convex programming.
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