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In many Krylov solvers running on current large scale compute clusters, global
reductions for both inner products and norms is starting to become a bottleneck;
a problem which will only get worse as we approach the era of exascale machines.
Although flop rates keep increasing through additional parallelism, link latencies
hit their physical limits. As compute nodes are often distributed over large
datacenters, these latencies start to play an important role in algorithm design.
Furthermore, load imbalance, system noise and processor variability (due to
extreme reduction in scale and voltage) will make global communication an
even more costly global synchronization step [1].

Recently there has been much interest in so called s-step Krylov methods [2]
that expand the Krylov base with s new vectors at once before performing an
orthogonalization step. This reduces the number of global communications by
a factor s.

In this work, we propose the use of non-blocking or asynchronous global col-
lective operations to hide the latency of global communication in the GMRES
algorithm. A standard GMRES iteration [3], based on classical (iterated) Gram-
Schmidt orthogonalization, requires at least two global reductions, one for or-
thogonalization and one for normalization. First of all, we show that this can be
reduced to just a single reduction. To avoid stability problems, the matrix vec-
tor product z; 11 = Av; is modified with a shift o; as 2,41 = (A — 0;1) v;. Proper
choices of the shifts are discussed. Furthermore, we present a class of pipelined
GMRES algorithms that allow overlapping of the inner product latency with
other computations and communications. Depending on the total reduction la-
tency, a larger pipelining depth [ can be used. The resulting algorithm keeps
two sets of Krylov base vectors

V;',lJrl = ['Uo,’l)l,...’l)i,l} and Zi+1 = [Zo,Zl,..‘Zi,l,Zi,lJrl,...Zi] 5

with VTV = I. Tteration i expands the V;_;;; base using only results of reduc-
tions started [ iterations ago while the Z; ;1 base is expanded by a vector created



by the (shifted) matrix vector product. To prevent a blow-up of the condition
number of the Z; base, a correction is applied to Z; 1, which introduces some
redundant calculations compared to the original GMRES algorithm.

The numerical stability of the presented GMRES variation is examined using
a collection of test matrices from applications. To assess the scalability and
overall performance of the pipelined algorithms, we developed an analytical
performance model, which allows us to study scaling aspects and determine
bottlenecks on large numbers of nodes. As non-blocking collective operations
are proposed for the upcoming MPI-3 standard, they will likely become available
in most MPI libraries soon.

We compare our approach with s-step or communication-avoiding GMRES, as
presented in [2]. We present some preliminary results on pipelining applied to
the CG algorithm, for which the results look promising since the short recurrence
keeps the amount of redundant calculations small.

In the pipelined GMRES algorithms, data dependencies between subsequent
steps in the algorithm have been relaxed. As a result, the network hardware
constraints can be relaxed. Apart from hiding global reduction latencies on
large distributed clusters, this could also allow more efficient fine grained work
scheduling on current multicore and heterogeneous (CPU + accelerator) archi-
tectures.
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