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We will show how reduced order models can significantly reduce the cost of
general inverse problems approached through parametric level set methods. Our
method drastically reduces the solution of forward problems in diffuse optimal
tomography (DOT) by using interpolatory parametric model reduction. In the
DOT setting, these surrogate models can approximate both the cost functional
and associated Jacobian with little loss of accuracy and significantly reduced
cost.

We recover diffusion and absorption coefficients, D(x) and µ(x), respectively,
using observations, m(t), from illumination by source signals, u(t). We assume
that the unknown fields can be characterized by a finite set of parameters,
p = [p1, . . . , p`]

T . Discretization of the underlying PDE gives the following,
order n, differential algebraic system,
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ν
E ẏ(t; p) = −A(p)y(t; p) + Bu(t) with m(t; p) = Cy(t; p), (1)

where y denotes the discretized photon flux; m = [m1, . . . , mndet
]T is the

vector of detector outputs; the columns of B are discretizations of the source
“footprints”; and A(p) is the discretization of the diffusion and absorption
terms, inheriting the parameterizations of these fields.

Let y(ω; p), u(ω), and M(ω; p) denote Fourier transforms of y(t; p), u(t), and
m(t; p), respectively. Taking the Fourier transform of (1), we find

M(ω; p) = Ψ(ıω; p) u(ω) where Ψ(s; p) = C
( s
ν

E + A(p)
)−1

B. (2)

Ψ(s,p) is a mapping from sources (inputs) to measurements (outputs) in the
frequency domain; it is the transfer function of the dynamical system (1). Given
a parameter vector, p, and absorption field, µ(·,p), input source, Ui, and fre-
quency ωj , Mi(ωj ; p) ∈ Cndet denotes the vector of observations predicted by
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the forward model. For nsrc sources and nω frequencies, we get

M(p) = [M1(ω1; p)T , . . . , M1(ωnω
; p)T , M2(ω1; p)T , . . . ,Mnsrc

(ωnω
; p)T ]T ,

which is a vector of dimension ndet · nsrc · nω. We obtain the empirical data
vector, D, from actual observations, and solve the optimization problem:

min
p∈R`

‖M(p)− D‖2

The computational cost of evaluating M(p) − D is dominated by the solution
of the large, sparse block linear systems in (2) for all frequencies ωj .

To reduce costs while maintaining accuracy, we seek a much smaller dynamical
system of order r � n that replicates the input-output map of (1):
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ν
Ê

˙̂
Yr(t; p) = −Â(p) Ŷ(t; p) + B̂ U(t) with m̂(t; p) = Ĉ Ŷ(t; p), (3)

where the new state vector Ŷ(t; p) ∈ Rr, Ê, Â(p) ∈ Rr×r, B̂ ∈ Rr×nsrc , and

Ĉ ∈ Rndet×r such that m(t; p) ≈ m̂(t; p). The surrogate transfer function is

Ψ̂(s; p) = Ĉ
( s
ν

Ê + Â(p)
)−1

B̂,

which requires only the solution of linear systems of dimension r � n; hence
drastically reducing the cost. For a given parameter value π used in an optimiza-
tion step, a reduced (surrogate) model for the necessary function evaluations at
the frequency ωj , involves the construction of a reduced parametric model of

the form (3) with transfer function Ψ̂(s; p) that satisfies

Ψ̂ (ıωj ;π) = Ψ (ıωj ;π) . (4)

This is exactly what interpolatory model reduction achieves. Moreover, the
transfer function Ψ̂(s) of the reduced-model also satisfies

∇pΨ (ıωj ,π) = ∇pΨ̂ (ıωj ,π) , and Ψ′ (ıωj ,π) = Ψ̂
′
(ıωj ,π) .

The use of interpolatory projections allows us to match both function and gra-
dient values exactly without computing them, requiring instead only that the
computed projection spaces defining the reduced model contain particular (sta-
bly computable) vectors. If we were to compute a reduced-model for every pa-
rameter point π and frequency ωj , and use these reduced-models in the forward
model, the solution of the inverse problem would proceed in exactly the same
way as in the case of the full-order forward model – the nonlinear optimization
algorithm would not see the difference between the full and reduced forward
problems. Of course, computing a new surrogate-model for every parameter
value is infeasible. Hence, we focus on methods of constructing surrogate-models
that have high-fidelity over a wide range of parameter values and consider effec-
tive approaches for updating the surrogate models. We will present numerical
examples that illustrate the effectiveness of these methods.
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