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GMRES is a powerful method to accelerate convergence of simple iterative
solvers for linear systems, like Jacobi or Gauss-Seidel (and other precondition-
ing processes). We extend the concept of preconditioned GMRES to the gen-
eral class of nonlinear optimization problems, proposing a general mechanism
to accelerate simple iterative methods for nonlinear optimization problems that
works in a genuinely nonlinear way.

Each iteration of the method consists of three steps. In the first step, a tentative
new iterate is generated by a stand-alone one-step process (which can be non-
linear). In the second step, an accelerated iterate is generated by a nonlinear
GMRES approach, recombining previous iterates in an optimal way, and essen-
tially using the stand-alone one-step process as a preconditioner. In particular,
the nonlinear extension of GMRES is used that was proposed by Washio and
Oosterlee in [ETNA Vol. 15 (2003), pp. 165-185] for nonlinear partial differ-
ential equation problems (which is itself related to other existing acceleration
methods for nonlinear equation systems). In the third step, a line search is
performed for globalization.

The resulting nonlinear GMRES (N-GMRES) optimization algorithm is applied
to a set of standard test problems for nonlinear optimization, using steepest de-
scent as a universally applicable preconditioner (corresponding to the identity
preconditioner in GMRES for linear systems). Performance of steepest-descent
preconditioned N-GMRES is shown to be competitive with standard nonlin-
ear conjugate gradient (N-CG) and limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization methods for the model problems considered. A
simple global convergence proof is provided for the N-GMRES optimization
algorithm with steepest descent preconditioner (with line search), under mild
standard conditions on the objective function and the line search processes.

Finally, the performance of the N-GMRES optimization algorithm is also illus-
trated for the problem of computing a canonical rank-R tensor approximation
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that has minimal distance to a given tensor in the Frobenius norm, where the
canonical rank-R tensor consists of the sum of R rank-one tensors. For this
application, we use alternating least-squares (ALS) minimization as the nonlin-
ear preconditioning process, and we find that ALS-preconditioned N-GMRES
is significantly faster than N-CG and L-BFGS for this difficult nonlinear opti-
mization problem. This illustrates how the N-GMRES optimization framework
allows for the use of powerful problem-dependent nonlinear preconditioners, and
we anticipate that this strategy may lead to efficient numerical methods for a
variety of nonlinear optimization problems.
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