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Many iterative partial eigenproblem solvers have been developed to address the
difficulties of computational and storage cost of direct eigensolvers. Krylov sub-
space solvers may be considered “classic” algorithms for large or sparse eigen-
problems; much research effort has been devoted to developing sophisticated
Krylov subspace solvers with fast convergence that are also robust against nu-
meric imprecision. Krylov subspace solvers are not without challenges, which
has motivated alternate means for computing eigenvalue-eigenvector pairs for
large, sparse matrices. Random sampling methods have also yielded simple and
elegant algorithms for approximately solving the eigenproblem, with as few as
one sparse matrix-dense matrix multiplication [4]. Despite performing only one
pass over the matrix, random projection methods produce good eigenvalue ap-
proximations and are robust against numeric imprecision. Though these two
methods were developed independently, they have notable theoretical and prac-
tical similarities. We will note the success of the random sampling methods
to motivate use of short block Krylov subspaces for eigenvalue approximation.
These spaces will be similar to those produced by Halko et. al.’s one-pass algo-
rithm, but with a narrower starting block than a one-pass algorithm and with
more iterations. Short block Krylov subspaces will be also robust to round-off
error. In some cases, short block Krylov subspaces will produce better lead-
ing eigenvalue approximations and have compute time advantages over random
sampling methods. We will study cases in which extension of the block Krylov
subspace by only a small amount improves the error residuals nontrivially. We
will explain the good performance of the one-pass algorithm in terms of har-
monic Ritz pairs. These results also suggest application of short block Krylov
subspaces to generic dimension reduction problems similar to the approaches
suggested in [2, 3].

Halko et. al. proposed several eigenvalue approximation methods [4], among
them, algorithms for one-pass eigenvalue approximation. This one-pass eigen-
value approximation method produces eigenvalue approximations that are re-
markably accurate, despite only requiring one pass over the data. Given a
Hermitian matrix A and random sampling matrix Ω, the eigenproblem is ap-
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proximated in colspan(AΩ). Not only is colspan(AΩ) a block Krylov subspace,
but it also is generated by one iteration of the band Lanczos routine [1] when
used with a random start block. The space colspan(AΩ) is also the shortest
block Krylov subspace to contain harmonic Ritz values. The one-pass algorithm
is relatively robust to round-off error. Halko et. al. compared their algorithms
against the Lanczos and Arnoldi algorithms, but only the single vector variants;
they note that the ordinary single-vector Lanczos or Arnoldi algorithms are
more prone to floating point imprecision than the one-pass random sampling
method. Little or no effort is required to stabilize the one-pass algorithm.

The one-pass method due to Halko et. al. uses the same subspace as one itera-
tion of the band Lanczos algorithm when the start block is random. Moreover,
a random start block is typically used to initialize a Krylov subspace for solv-
ing the eigenproblem. Block Krylov subspaces are known to have advantages
over single vector methods when eigenvalues are tightly clustered and multiple
eigenvalues are required, but Halko et. al. only considered one and two pass
algorithms. This motivates use of short block Krylov subspaces for eigenvalue
approximation, beyond the colspan(AΩ) used in the one pass algorithm. One
may produce a subspace of equivalent dimension by reducing the block size and
performing more Lanczos or Arnoldi iterations. Reduction of the block size
coupled with extension of the block Krylov subspace by a small number of it-
erations will unlikely spoil the robustness to round-off error or deflation. More
iterations will produce much better eigenvalue approximations, especially in the
extremum of the spectrum. We note that in some cases, dramatic improvements
in eigenpair approximations and magnitudes may be realized by performing a
small number of band Lanczos iterations with a narrower start block instead
of a one-pass algorithm. Eigenproblem applications which minimize a matrix
norm, such as low-rank matrix approximation, may benefit from better approxi-
mation and larger magnitudes of extreme eigenvalues, even if it is at the expense
of interior eigenvalues. Whether a one-pass algorithm with a large start block
or a short Krylov subspace with a narrower start block produces a better ma-
trix norm residual depends on the distribution of eigenvalues; we will study the
trade-offs for various eigenvalue distributions. Reducing the block size will also
lead to compute time advantages through better exploitation of locality.

Utility of short band Krylov subspaces is not limited to eigenvalue approxima-
tion. Various publications have advocated short Krylov subspaces for generic
dimension reduction problems [5, 2, 3]; short band Krylov subspaces will be
applicable in these domains as well. Generally speaking, generic dimension re-
duction applications of Krylov subspaces use a short Krylov subspace in which
some Ritz pairs have not converged as an alternate for a eigenspace or singular
vector space for generic dimension reduction. These applications are distinct
from classic Krylov subspace methods to solve the eigenproblem as they do
not expand the Krylov subspace until all required eigenpairs have converged.
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Rather, to effect a reduction to r dimensions, the problem is simply projected
into Kr(A, x0). The existing work on Krylov subspaces for generic dimension
reduction has not used block Krylov subspaces; their use may improve the ef-
fectiveness of the dimension reduction.
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