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Abstract. In a companion paper [8], we propose a new multilevel solver for two-dimensional
elliptic systems of partial differential equations (PDEs) with nonlinearity of type u∂v. The approach
is based on a multilevel projection method (PML [9]) applied to a first-order system least-squares
(FOSLS) functional that allows us to treat the nonlinearity directly. While [8] focuses on compu-
tation, here we concentrate on developing a theoretical framework that confirms optimal two-level
convergence. To do so, we choose a first-order formulation of the Navier-Stokes equations as a basis of
our theory. We establish continuity and coercivity bounds for the linearized Navier-Stokes equations
and the full nonquadratic least-squares functional, as well as existence and uniqueness of a functional
minimizer. This leads to the immediate result that one cycle of the two-level PML method reduces
the functional norm by a factor that is uniformly less than 1.
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1. Introduction. Our companion paper [8] introduces a new multilevel solver
for two-dimensional elliptic systems of partial differential equations (PDEs) with non-
linearity of type u∂v. The approach is based on a multilevel projection method (PML
[9]) applied to a first-order system least-squares (FOSLS) functional, where the non-
linearity is treated directly, with no need for linearization anywhere in the algorithm.
While [8] focuses on computation, the key objective of the present paper is to establish
local well-posedness of our functional minimization problem. This result leads to the
immediate conclusion that our two-level solver converges linearly with grid indepen-
dent factors, as observed numerically in [8]. This two-grid result can be extended to
W -cycles in the usual way. However, an important alternative would be to establish
a V-cycle result based on the general theory developed in [11] and [12]. This alter-
native would naturally yield grid-dependent convergence bounds because of the weak
smoothness assumptions on the problem formulation (i.e., only Lipschitz continuity
on the domain boundary).

We base our theory for a two-level PML method on the first-order formulation of
the Navier-Stokes formulation given in (2.1) below. Although we choose this formu-
lation as a foundation for our theoretical framework, it is not limited to it: similar
results can be established for other PDEs of this class.

This paper is organized in the following way. Section 2 provides the first-order
system formulation, with definitions, notation, and description of one two-level PML
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cycle step. Section 3 establishes several continuity and coercivity bounds for the
Oseen equations, as well as for the full nonquadratic least-squares functional. Section
4 shows existence and uniqueness of a functional minimizer, some characteristics of
coarse-grid correction and relaxation, and two-grid convergence.

2. First-Order System Formulation, Definitions, Notation, and Other

Preliminaries. We use c and C throughout as generic constants that my change
value with every occurrence but are independent of mesh size. To keep track of a
specific value for a constant, subindices may be used.

First-order system least-squares formulations for the Navier-Stokes equations are
discussed in [1, 2, 3, 6]. In the framework of this paper, we consider the first-order
velocity-flux formulation of the Navier-Stokes equations given in [1] and [2]:

L(x) = g :=































∇ut −U = 0 in Ω,

−(∇·U)t +∇p + Re Utu = f in Ω,

∇· u = 0 in Ω,

∇×U = 0 in Ω,

∇
(

trU
)

= 0 in Ω,

(2.1)

where Ω is a subset of R
n (n = 2, 3) with Lipschitz continuous boundary ∂Ω and

f ∈ L2(Ω)n. As boundary conditions, without loss of generality, we take u = 0 and
n×U = 0 on ∂Ω, where n is the outward unit normal on ∂Ω. Writing the unknowns as
x = (u,U, p), then the nonquadratic functional is constructed by taking the L2-norm
of each interior equation:

F(x; g) = ‖L(x)− g‖
2

0,Ω
, x ∈ VVV, (2.2)

where g = (0, f , 0,0,0)T and the space is defined by

VVV = H1
0 (Ω)n × V0 × (H1(Ω)/R),

with

V0 = {U ∈ H1(Ω)n2

: n×U = 0 on ∂Ω}.

It is shown in [5] that the Navier-Stokes equations generally have more than one solu-
tion, unless the viscosity and the external forces satisfy very stringent requirements.
However, it can also be shown that, in many practical examples, these solutions are
mostly isolated, i.e., there exist a neighborhood in which each solution is unique.
Bifurcation phenomena are rare. We thus assume we are in a closed neighborhood,
B(x∗, r), of an isolated solution, x∗ ∈ VVV , to (2.1), that is, a global minimum of (2.2),
for which F(x∗; g) = 0. The neighborhood is taken to be an H1-ball around x∗ with
radius r > 0 defined as

B(x∗, r) :=
{

x ∈ VVV : ‖x− x∗‖1,Ω
< r

}

,

where

‖x‖
2

1,Ω
≡ ‖u‖

2

1,Ω
+ ‖U‖

2

1,Ω
+ ‖p‖

2

1,Ω
.
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Its closure is B(x∗, r) =
{

x ∈ VVV : ‖x − x∗‖1,Ω
≤ r

}

. Several places along the way,
we assume that r is so small that certain expansions we develop give us the desired
bounds.

Denote by L′(x)[y] the first Fréchet derivative of operator L at x ∈ VVV in direction
y = (v,V, q) ∈ VVV. Note that the nonlinear term, Re Utu, in (2.1) becomes Re(Vtu+
Utv) in L′(x)[y] and that L′(x)[y] is linear in y. Also, L′(x) is the same operator
as that for the Oseen equations (cf. [7]). L′′(x)[y, z] denotes the second Fréchet
derivative at x in directions y and z = (w,W, t) ∈ VVV. For the linear terms of (2.1),
the second Fréchet derivative is the zero operator. For the nonlinear term, we obtain
Re(Vtw + Wtv), so L′′(x) is independent of x.

Another set definition we use later is the closed line segment connecting points
x, y ∈ VVV: [x,y] := {θx + (1− θ)y : 0 ≤ θ ≤ 1}. This notation should not be confused
with the square brackets used for directional derivatives because the operator always
immediately precedes the direction.

Having defined the first and second Fréchet derivatives for operator L, we are
able to express the first and second Fréchet derivatives of the nonquadratic functional
in (2.2) in terms of L and its derivatives. For x,y ∈ VVV, the first Fréchet derivative of
(2.2) in direction y is

F ′(x; g)[y] = 2 <L(x)− g,L′(x)[y]> . (2.3)

Its second Fréchet derivative in direction [y,y] (needed later for Taylor expansions)
is

F ′′(x; g)[y,y] = 2 ‖L′(x)[y]‖
2

0,Ω
+ 2 <L(x)− g,L′′(x)[y,y]> . (2.4)

Remark 1. As with all multigrid schemes, relaxation is the basis for our PML
approach. One choice is steepest descent, which involves a gradient direction, d, in VVV
and a step size, s, determined as the smallest nonnegative critical point of F(x−sd; g).
To understand this step, it is useful to examine the polynomial

F(x− sd; g) = F(x; g)− sF ′(x; g)[d] +
s2

2
F ′′(x; g)[d,d]

−
s3

6
F ′′′(x; g)[d,d,d] +

s4

24
F (4)(x; g)[d,d,d,d].

From (2.4), we see that F ′′′(x; g)[d,d,d] = 6 < L′(x)[d],L′′(x)[d,d] > and
F (4)(x; g)[d,d,d,d] = 6 <L′′(x)[d,d],L′′(x)[d,d]>. Thus, when F ′′(x; g) > 0, an
inspection of this polynomial for s > 0 implies that there exists a smallest nonnegative
critical point, s, of F(x− sd; g) and that it must be a local minimum of F(x, g) such
that F(x− sd; g) ≤ F(x; g). (Note that either d = 0 and F(x− sd; g) = F(x; g), so
s = 0, or F(x − sd; g) initially decreases, but then tends to +∞ as s goes from 0 to
∞.)

Similar definitions can be made for subspaces of VVV . Consider a quasi-uniform
finite element partition of Ω with approximate mesh size h and let Hh(Ω) be the
corresponding finite element subspace of H1(Ω) consisting of piecewise polynomials:
a function in Hh(Ω) is continuous on Ω and polynomial within each element. Let
Hh

0 (Ω) denote the subspace of Hh(Ω) of functions that are zero on ∂Ω. Then define

Sh = Hh
0 (Ω)n × Vh

0 × (Hh(Ω)/R) ⊂ VVV,
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with

Vh
0 = {Uh ∈ Hh(Ω)n2

: n×Uh = 0 on ∂Ω}.

Suppose also that we have a corresponding coarser 2h level so that the corresponding
discrete space, S2h, forms a subspace of Sh. For this paper, we assume standard
nested finite element spaces, S2h ⊂ Sh ⊂ VVV , that satisfy the approximation property,

inf
x2h∈S2h

‖xh − x2h‖
2

0,Ω
≤ C1 h2 ‖xh‖

2

1,Ω
, (2.5)

and the inverse estimate,

‖xh‖
2

1,Ω
≤

C2

h2
‖xh‖

2

0,Ω
, (2.6)

for all xh in Sh, where C1 and C2 are positive constants that do not depend on h (see
[4]). Further, define a discrete H1-ball by Bh(x∗, r) =

{

xh ∈ Sh : ‖xh − x∗‖1,Ω
< r

}

and its closure by B
h
(x∗, r) =

{

xh ∈ Sh : ‖xh − x∗‖1,Ω
≤ r

}

. As we said, we
choose r progressively smaller in several places in what follows. Nowhere does this
requirement depend on h. However, we implicitly assume that, no matter how small
r becomes, h is so small that Bh(x∗, r) 6= ∅.

Before being able to define the relaxation scheme and two-level PML method,
we introduce the discrete functional and its gradient as well as the operator norm
associated with the second Fréchet derivative of functional F(x; g).

Definition 2.1 (Discrete Functional and its L2-Gradient). Let xh ∈

B
h
(x∗, r) and define Fh(xh; g) as the restriction of F(xh; g) to space Sh. Now let

yh ∈ Sh. By the definition of the first Fréchet derivative, we have

Fh′
(xh; g)[yh] = <L(xh)− g,L′(xh)[yh]>,

and, since Sh is finite dimensional, the Riesz Representation Theorem guarantees the
existence of the discrete L2-gradient, ∇hF(xh; g) ∈ Sh, which satisfies

Fh′
(xh; g)[yh] =<L′∗(xh)

(

L(xh)− g
)

,yh>=:<∇hF(xh; g),yh> .

Note that ∇hF(xh; g) ∈ Sh can be defined weakly by <∇hF(xh; g),yh>=<L(xh) −
g,L′(xh)[yh]>, for all yh ∈ Sh. Note also that ∇hFh(xh; g) = ∇hFh(xh; gh), where
g

h is the L2-orthogonal projection of g onto space L′(xh)Sh.

Remark 2. Denote by xh
∗ the element in Sh that minimizes (2.2) over B

h
(x∗, r).

Such an element exists because this set is compact and F(x; g) is continuous, as we
show in Theorem 2. Note that if xh ∈ Bh(x∗, r) (i.e., the interior of the ball), then
xh
∗ is a grid h critical point in the sense that

<∇hF(xh
∗ ; g),yh>= <L(xh

∗)− g,L′(xh
∗)[yh]>= 0, (2.7)

for all yh ∈ Sh, provided F ′′(x; g) is bounded on B(x∗, r), as we show in Theorem 1
below. This follows from a standard argument based on Taylor series and outlined as
follows: if

0 ≤ F
(

xh
∗ − s∇hF(xh

∗ ; g)
)

−F(xh
∗ ; g) =

− s‖∇hF(xh
∗ ; g)‖

2

0,Ω
+ s2F ′′(x̃h; g)[∇hF(xh

∗ ; g),∇hF(xh
∗ ; g)];
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and, for small enough but positive s, we could make the last expression negative (a
contradiction) unless ∇hF(xh

∗ ; g) = 0. This standard argument is referred to later in
the proof of Lemma 4.3 to show that the coarse-grid correction step of PML (described
next) is determined by a grid 2h critical point. That x∗ is a critical point of F(x; g)
in B(x∗, r) follows simply from (2.3).

Definition 2.2 (Discrete Operator Norm of the Second Derivative).

Let xh ∈ B
h
(x∗, r) and yh ∈ Sh. Then the discrete operator norm associated with the

second Fréchet derivative of functional F(xh; g) is defined by

‖|F ′′(xh; g)‖|
0,h

= sup
06=yh∈Sh

∣

∣F ′′(xh; g)[yh,yh]
∣

∣

<yh,yh>
.

Next, we define one step of relaxation. We consider two types of schemes, both
of which use the discrete gradient as a descent direction. The first scheme reduces to
Richardson for the linear case and the second is optimal steepest descent. The theory
focuses on the Richardson-type scheme because it is simpler to analyze and it sets the
stage for a simple conclusion for steepest descent.

Definition 2.3 (Relaxation). One step of Richardson-type relaxation is de-
fined by

xh ← xh −
ω

‖|F ′′(xh; g)‖|
0,h

∇hF(xh; g), (2.8)

where ∇hF(xh; g) is the search direction, 1/‖|F ′′(xh; g)‖|
0,h

the basic step length, and
ω a damping parameter. One step of steepest descent is defined by

xh ← xh − s∇hF(xh; g), (2.9)

where s is chosen as the smallest nonnegative root of

∂F

∂s

(

(

xh − s∇hF(xh; g)
)

; g
)

= 0. (2.10)

We now have all the ingredients needed to describe the two-level PML method. Its
first step computes the nearest locally optimal coarse-grid correction, which Lemma
4.3 below shows must exist uniquely provided we are close enough to x∗. Its second
step is one relaxation sweep given by either (2.8) or (2.9). The method in (2.8) is
well defined because F ′′(xh; g) is nonzero, as Theorem 1 below shows. The method
in (2.9) is also well defined as Remark 1 shows.

STEP 1. For a given initial guess, xh
0 ∈ S

h, perform the coarse-grid correction
step given by xh

1
2

← xh
0 +x2h

∗ , where x2h
∗ is the local minimizer of F(xh

0 +x2h; g) (e.g.,

it is a grid 2h critical point) with minimal H1-norm:

x2h
∗ = argmin

x2h∈S2h

{

‖x2h‖
1,Ω

: ∇2hF(xh
0 + x2h; g) = 0, F(xh

0 + x2h; g) ≤ F(xh
0 ; g)

}

.

STEP 2. Let xh
1 be the result of one relaxation step given by (2.8) or (2.9) applied

to xh
1
2

.

Further iterations of PML are defined in the obvious way, with xh
k taking on the

role of xh
0 and xh

k+1 being the result corresponding to xh
1 , for k = 1, 2, . . . .
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3. Continuity and Coercivity bounds. In this section, we first establish con-
tinuity and coercivity for the Oseen equations (Lemma 3.3). We then use Lemmas
3.1 and 3.3 to prove continuity and coercivity of F ′′(x; g)[y,y] as a function of y ∈ VVV ,
for all x ∈ B(x∗, r) (Theorem 1). The results in this section help us later to establish
the key objective of our two-level method: one cycle of two-level PML reduces the
functional norm by a factor that is bounded uniformly below 1 (Theorem 4).

Lemma 3.1. There exist a γ0, depending only on Re and Ω, such that

‖L′′(x)[y, z]‖
0,Ω
≤ γ0‖y‖1,Ω

‖z‖
1,Ω

,

for all x,y, and z in VVV.
Proof. Recall, for x = (u,U, p), y = (v,W, q), and z = (w,W, t) in VVV , that the

second Fréchet derivative for the linear terms of (2.1) is the zero operator. For the
nonlinear term, we obtain Re(Vtw + Wtv). Then, the result follows directly from
the Sobolev Imbedding Theorem about multiplication in Sobolev spaces (Corollary
I.1.1 in [5]).

Lemma 3.2. For all x = (u,U, p) ∈ VVV, there exist two positive constants, c̃3 and
C̃3, depending only on Re, x, and Ω, such that

c̃3(x) ‖y‖
2

1,Ω
≤ ‖L′(x)[y]‖

2

0,Ω
≤ C̃3(x) ‖y‖

2

1,Ω
,

for all y = (v,V, q) ∈ VVV.
Proof. We use the derivation of the regularity estimate, as well as Theorems

3.2, 4.1, and 4.2 in [7], as guidelines for the proof of this lemma. Analogous to the
continuity and coercivity proof for L′((u, p)

)[

(v,V, q)
]

in [7], we start from the Oseen
equations in the following form:

−∆v + Re
[

(∇vt)tu + Utv
]

+∇q = f ,

∇· v = g,
(3.1)

where g ∈ L2(Ω). The first equation differs from that in [7] because U is used instead
of ∇ut. We also relax the smoothness assumption by only requiring u and U to be
in H1

0 (Ω)n and V0, respectively. ([7] requires u to be in H2
0 (Ω)n).

First, we establish an a priori H1-regularity estimate for the equations in (3.1):
if Ω has Lipschitz boundary, then, for f ∈ H−1

0 (Ω)n and g ∈ L2
0(Ω), the weak solution

of (3.1), (v, q) ∈ H1
0 (Ω)n × L2

0(Ω), satisfies the a priori estimate

‖∇vt‖
0,Ω

+ ‖q‖
0,Ω
≤ const

(

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

)

, (3.2)

for δ ∈ (0, 1
2 ), where δ

o
= 0 for Ω ⊂ R

2 and δ
o

= 1
2 for Ω ⊂ R

3.
To prove this estimate, we first take the pointwise dot product of the first equation

of (3.1) with any ψ ∈ H1
0 (Ω)n and the dot product of the second equation of (3.1)

with any φ ∈ L2(Ω), integrate it over Ω, and use integration by parts. This yields

<∇vt,∇ψt> +Re <(∇vt)tu + Utv,ψ> − <q,∇·ψ> = <f ,ψ>,

<∇· v, φ> = <g, φ> .
(3.3)

Since g ∈ L2(Ω), we can choose an s ∈ H1
0 (Ω)n, according to Lemma 4.1 in [7], such

that

∇· s = g and |s|
1,Ω
≤ C‖g‖

0,Ω
. (3.4)
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Then, setting υυυ = v − s ∈ H1
0 (Ω)n in (3.3), we have











<∇υυυt,∇ψt> +Re <(∇υυυt)tu + Utυυυ,ψ> − <q,∇·ψ> = <f ,ψ> − <∇st,∇ψt>

−Re <(∇st)tu + Uts,ψ>,

<∇· υυυ, φ> = <0, φ>,
(3.5)

for any ψ ∈ H1
0 (Ω)n and φ ∈ L2(Ω). For the first equation in (3.5), by taking ψ = υυυ,

we obtain

‖∇υυυt‖2
0,Ω

=<f ,υυυ> − <∇st,∇υυυt> −Re
(

<(∇υυυt)tu + Utυυυ,υυυ> + <(∇st)tu + Uts,υυυ>
)

≤ | <f ,υυυ> |+ | <∇st,∇υυυt> |

+ Re | <Utυυυ,υυυ> + <(∇υυυt)tu,υυυ> + <Uts,υυυ> + <(∇st)tu,υυυ> |.
(3.6)

For the first term of the upper bound in (3.6), recall the definition of the H−1(Ω)
norm:

‖f‖
−1,Ω

:= sup
06=υυυ∈H1

0 (Ω)

<f ,υυυ>

|υυυ|
1,Ω

⇒
<f ,υυυ>

|υυυ|
1,Ω

≤ ‖f‖
−1,Ω

, ∀υυυ 6= 0 ∈ H1
0 (Ω)n.

Hence, for all υυυ 6= 0 ∈ H1
0 (Ω)n, we have <f ,υυυ> ≤ ‖f‖

−1,Ω
‖∇υυυ‖

0,Ω
. To bound the

second term, we use the Cauchy-Schwarz’s inequality:

<∇st,∇υυυt> ≤ ‖∇st‖
0,Ω
‖∇υυυt‖

0,Ω
= |s|

1,Ω
‖∇υυυt‖

0,Ω

(3.4)

≤ C‖g‖
0,Ω
‖∇υυυt‖

0,Ω
.

It remains to derive bounds for the last four terms, which are classified in [5] as trilin-
ear. In the following, C denotes a generic constant that might depend on Re,Ω, ‖u‖

1
,

and ‖U‖
1
.

According to the Sobolev Imbedding Theorem I.1.3 in [5], the space H1(Ω) is
continuously imbedded in L4(Ω) for n ≤ 4. Then,

| <Uυυυ,υυυ> | =

∣

∣

∣

∣

∣

∣

n
∑

i,j=1

∫

Ω

υjUijυi dx

∣

∣

∣

∣

∣

∣

≤
n
∑

i,j=1

‖υj‖0,Ω
‖Uij‖0,4,Ω

‖υi‖0,4,Ω

≤ C‖υυυ‖
0,Ω
‖U‖

1,Ω
‖υυυ‖

1,Ω
≤ C‖υυυ‖

δo+δ,Ω
‖U‖

1,Ω
|υυυ|

1,Ω
.

(3.7)

The last inequality is a result of the Poincaré-Friedrichs inequality (‖υυυ‖
1,Ω
≤ C|υυυ|

1,Ω
).

Applying the Sobolev Imbedding Theorem to the second trilinear term leads to

<(∇υυυt)tu,υυυ>≤ ‖∇υυυt‖
0,Ω
‖utυυυ‖

0,Ω
≤ ‖∇υυυt‖

0,Ω
‖u‖

1,Ω
‖υυυ‖

δo+δ,Ω
. (3.8)

Similar arguments hold for the remaining two trilinear terms. Hence,

<Uts,υυυ> ≤ C ‖U‖
1,Ω
|s|

1,Ω
‖υυυ‖

1,Ω
≤ C ‖U‖

1,Ω
‖∇υυυt‖

0,Ω
‖g‖

0,Ω
(3.9)

and

<(∇st)tu,υυυ> ≤ C |s|
1,Ω
‖u‖

1,Ω
‖υυυ‖

1,Ω
≤ C ‖u‖

1,Ω
‖∇υυυt‖

0,Ω
‖g‖

0,Ω
. (3.10)

Combining the results yields

‖∇υυυt‖2
0,Ω
≤ ‖f‖

−1,Ω
‖∇υυυ‖

0,Ω
+ C‖g‖

0,Ω
‖∇υυυ‖

0,Ω
+ C‖U‖

1,Ω
‖υυυ‖

δo+δ,Ω
‖∇υυυ‖

0,Ω

+C
(

‖U‖
1,Ω

+ ‖u‖
1,Ω

)

‖g‖
0,Ω
‖∇υυυ‖

0,Ω
.
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Canceling ‖∇υυυ‖
0,Ω

gives

‖∇υυυt‖
0,Ω
≤ C(Re, ‖u‖

1,Ω
, ‖U‖

1,Ω
,Ω)

[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖υυυ‖
δo+δ,Ω

]

. (3.11)

To bound q, choose ψ ∈ H1
0 (Ω)n according to Lemma 4.1 in [7] such that

∇·ψ = q and |ψ|
1,Ω
≤ C‖q‖

0,Ω
. (3.12)

Using again the first equation of (3.5), we obtain

‖q‖2
0,Ω

= <∇υυυt,∇ψt> +Re <(∇υυυt)tu + Utυυυ,ψ>

− <f ,ψ> + <∇st,∇ψt> +Re <(∇st)tu + Uts,ψ>

≤ <∇υυυt,∇ψt> +Re <(∇υυυt)tu + Utυυυ,ψ>

+| <f ,ψ> |+ <∇st,∇ψt> +Re <(∇st)tu + Uts,ψ> .

We proceed similarly as with the bound ‖∇υυυt‖
0,Ω

. For all ψ 6= 0 ∈ H1
0 (Ω)n,

<f ,ψ> ≤ ‖f‖
−1,Ω
|ψ|

1,Ω

(3.12)

≤ C‖f‖
−1,Ω
‖q‖

0,Ω
, (3.13)

<∇υυυt,∇ψt> ≤ ‖∇υυυt‖
0,Ω
‖∇ψt‖

0,Ω
= |υυυ|

1,Ω
|ψ|

1,Ω

(3.12)

≤ C|υυυ|
1,Ω
‖q‖

0,Ω
, (3.14)

and

<∇st,∇ψt> ≤ ‖∇st‖
0,Ω
‖∇ψt‖

0,Ω
= |s|

1,Ω
|ψ|

1,Ω

(3.12)

≤ C|s|
1,Ω
‖q‖

0,Ω
. (3.15)

The bounds for trilinear terms <(∇υυυt)tu,ψ> and <(∇st)tu,ψ> follow directly by
applying Lemma IV.2.1 in [5] and the Poincaré-Friedrichs inequality:

<(∇υυυt)tu,ψ> ≤ C |υυυ|
1,Ω
‖u‖

1,Ω
‖ψ‖

1,Ω
≤ C ‖u‖

1,Ω
‖∇υυυt‖

0,Ω
|ψ|

1,Ω
(3.16)

and

<(∇st)tu,ψ> ≤ C |s|
1,Ω
‖u‖

1,Ω
‖ψ‖

1,Ω
≤ C ‖u‖

1,Ω
|s|

1,Ω
|ψ|

1,Ω
. (3.17)

For the remaining trilinear terms, we follow the argument in (3.7):

<Utυυυ,ψ> ≤ C ‖U‖
1,Ω
‖υυυ‖

1,Ω
|ψ|

1,Ω
≤ C ‖U‖

1,Ω
‖∇υυυt‖

0,Ω
|ψ|

1,Ω
(3.18)

and

<Uts,ψ> ≤ C ‖U‖
1,Ω
‖s‖

1,Ω
|ψ|

1,Ω
≤ C ‖U‖

1,Ω
|s|

1,Ω
|ψ|

1,Ω
. (3.19)

With (3.13)-(3.19), we have

‖q‖2
0,Ω

≤ C‖f‖
−1,Ω
‖q‖

0,Ω
+ C|υυυ|

1,Ω
‖q‖

0,Ω
+ C|s|

1,Ω
‖q‖

0,Ω

+ C
(

‖∇υυυt‖
0,Ω

+ |s|
1,Ω

)

|ψ|
1,Ω

(3.12)

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
(

‖f‖
−1,Ω

+ ‖∇υυυt‖
0,Ω

+ |s|
1,Ω

)

‖q‖
0,Ω

(3.4),(3.11)

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
(

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖υυυ‖
δo+δ,Ω

)

‖q‖
0,Ω

.
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Canceling ‖q‖
0,Ω

results in

‖q‖
0,Ω
≤ C(Re, ‖u‖

1,Ω
, ‖U‖

1,Ω
,Ω)

(

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖υυυ‖
δo+δ,Ω

)

. (3.20)

Recall that we seek an estimate for ‖∇vt‖
0,Ω

+ ‖q‖
0,Ω

in terms of v and q and not
for ‖∇υυυt‖

0,Ω
+ ‖q‖

0,Ω
in terms of υυυ and q. Earlier, we defined υυυ to be the difference

between v and s. Now, adding s to υυυ leads to estimates for ‖∇vt‖
0,Ω

+‖q‖
0,Ω

in terms
of v and q:

‖∇vt‖
0,Ω

≤ ‖∇υυυt +∇st‖
0,Ω
≤ ‖∇υυυt‖

0,Ω
+ ‖∇st‖

0,Ω

(3.11)

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖υυυ‖
δo+δ,Ω

+ ‖∇st‖
0,Ω

]

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

+ C|s|
1,Ω

]

(3.4)

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

+ C‖g‖
0,Ω

]

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

]

.

Similarly,

‖q‖
0,Ω
≤ C(Re, ‖u‖

1,Ω
, ‖U‖

1,Ω
,Ω)

[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖υυυ‖
δo+δ,Ω

]

≤ C(Re, ‖u‖
1,Ω

, ‖U‖
1,Ω

,Ω)
[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

]

.

Combining the bounds for ‖∇vt‖
0,Ω

and ‖q‖
0,Ω

results in the a priori estimate

‖∇vt‖
0,Ω

+ ‖q‖
0,Ω
≤ C(Re, ‖u‖

1,Ω
, ‖U‖

1,Ω
,Ω)

[

‖f‖
−1,Ω

+ ‖g‖
0,Ω

+ ‖v‖
δo+δ,Ω

]

. (3.21)

Theorem 4.1 in [7] removes the ‖v‖
δo+δ,Ω

term by assuming uniqueness of the solution,

(v,V, q) ∈ VVV. This is a direct consequence of the standard compactness argument.
Since H1

0 (Ω) is compact in Hδo+δ(Ω), where δ ∈ (0, 1
2 ) and δ

o
= 0 or 1

2 depending on
the spatial dimension of the domain, we can apply the standard compactness argument

to (3.21) in a way similar to the estimate ‖∇vt‖
0,Ω

+‖q‖
0,Ω
≤ C(Re,u,Ω)

[

‖f‖
−1,Ω

+

‖g‖
0,Ω

+ ‖v‖
0,Ω

]

in the proof of Theorem 4.1 of [7]. We also note that the slightly

different constant in (3.21) (compared to the regularity estimate in [7]) has no further
implications in [7] on Theorems 3.2, 4.1, and 4.2 or their proofs. Thus, we obtain
continuity and coercivity for L′(x)[y] under the somewhat weaker assumptions of x

and y being in VVV.
We conclude that there exist two positive constants, c̃3 and C̃3, which depend on

Re, the H1-norm of u and U, and Ω, such that

c̃3(x) ‖y‖
2

1,Ω
≤ ‖L′(x)[y]‖

2

0,Ω
≤ C̃3(x) ‖y‖

2

1,Ω
,

for all y ∈ VVV .

The next lemma establishes, for all x ∈ B(x∗, r) and r sufficiently small, a uniform

coercivity and continuity bound on ‖L′(x)[y]‖
2

0,Ω
.
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Lemma 3.3. Let x∗ be an isolated solution of (2.2) and let c̃3(x∗) and C̃3(x∗)
be the respective coercivity and continuity constants as defined in Lemma 3.2. Then,

c3‖y‖
2

1,Ω
≤ ‖L′(x)[y]‖

2

0,Ω
≤ C3‖y‖

2

1,Ω
,

for all x = (u,U, p) ∈ B(x∗, r), y = (v,V, q), and z = (w,W, t) ∈ VVV, where c3 :=
c̃3(x∗)− γ0r

2 > 0 provided r <
√

c̃3(x∗)/γ0 and C3 := C̃3(x∗) + γ0r
2 > 0.

Proof. For all x,y ∈ B(x∗, r) and r determined later, Lemma 3.2 implies that

‖L′(x)[y]‖
2

0,Ω
= ‖L′(x)[y]− L′(x∗)[y] + L′(x∗)[y]‖

2

0,Ω

≤ ‖L′′(x̃)[x− x∗,y]‖
2

0,Ω
+ ‖L′(x∗)[y]‖

2

0,Ω

≤
(

γ0‖x− x∗‖
2

1,Ω
+ C̃3(x∗)

)

‖y‖
2

1,Ω

≤
(

γ0r
2 + C̃3(x∗)

)

‖y‖
2

1,Ω
=: C3‖y‖

2

1,Ω

and

‖L′(x)[y]‖
2

0,Ω
= ‖L′(x)[y]− L′(x∗)[y] + L′(x∗)[y]‖

2

0,Ω

≥ − ‖L′′(x̃)[x− x∗,y]‖
2

0,Ω
+ ‖L′(x∗)[y]‖

2

0,Ω

≥
(

− γ0‖x− x∗‖
2

1,Ω
+ c̃3(x∗)

)

‖y‖
2

1,Ω

≥
(

− γ0r
2 + c̃3(x∗)

)

‖y‖
2

1,Ω
=: c3‖y‖

2

1,Ω
.

Constant C3 is obviously positive and r <
√

c̃3(x∗)
γ0

ensures that c3 is positive.

Note that c3 and C3 in Lemma 3.3 depend only on Re, r, and Ω.

Next, we derive continuity and coercivity results for the full nonquadratic func-
tional, F(x; g). First, we establish these results for its second Fréchet derivative.
Then, almost as a direct implication of this, we achieve continuity and coercivity for
the functional norm itself. We restrict ourselves to an r that is small enough to ensure
that all of these results hold uniformly for x ∈ B(x∗, r).

Theorem 1. There exist an r > 0 such that, for any x ∈ B(x∗, r), the second
Fréchet derivative of F(x; g) in direction [y,y], y ∈ VVV, is positive. Furthermore,
there exist two positive constants, c4 and C4, which depend only on Re, r, and Ω,
such that

F ′′(x; g)[y, z] ≤ C4‖y‖1,Ω
‖z‖

1,Ω
(3.22)

and

c4‖y‖
2

1,Ω
≤ F ′′(x; g)[y,y], (3.23)

for any x ∈ B(x∗, r) and all y ∈ VVV.
Proof. First, we show that F ′′(x; g)[y,y] is positive. Let x ∈ B(x∗, r), with

r <
√

c̃3(x∗)
γ0

, as in the proof of Lemma 3.3. Then the Cauchy-Schwarz inequality and

Lemmas 3.1 and 3.3 show that

<L(x)− g,L′′(x)[y,y]> = <L′(x̃)[x−x∗],L
′′(x)[y,y]>

≤ ‖L′(x̃)[x−x∗]‖0,Ω
· ‖L′′(x)[y,y]‖

0,Ω

≤
√

C3γ0 ‖x−x∗‖1,Ω
‖y‖

2

1,Ω
,

(3.24)
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where x̃ ∈ [x∗,x] ⊂ B(x∗, r). Then, by (2.4), (3.24), and Lemma 3.3, we have

F ′′(x; g)[y,y] = 2 ‖L′(x)[y]‖
2

0,Ω
+ 2 <L(x)− g,L′′(x)[y,y]>

≥ 2c3‖y‖
2

1,Ω
− 2

√

C3γ0 ‖x− x∗‖1,Ω
‖y‖

2

1,Ω

=
(

2c3 − 2
√

C3γ0 ‖x− x∗‖1,Ω

)

‖y‖
2

1,Ω

=

(

2c̃3(x∗)− 2γ0r
2 − 2γ0r

√

C̃3(x∗) + γ0r2

)

‖y‖
2

1,Ω

=: c4(r) ‖y‖
2

1,Ω
.

Since c4(r) is continuous with respect to r and c4(0) = 2c̃3(x∗) > 0, then c4(r) is
positive for small enough r > 0. This r ensures that the second Fréchet derivative of
F(x; g) in direction [y,y] is positive for all x ∈ B(x∗, r).

The upper bound for F ′′(x; g)[y, z] follows by Lemma 3.3, (3.24), and Lemma
3.1:

F ′′(x; g)[y, z] = 2‖L′(x)[y]‖
0,Ω
‖L′(x)[z]‖

0,Ω
+ 2 <L(x)− g,L′′(x)[y, z]>

≤ 2C3‖y‖1,Ω
‖z‖

1,Ω
+ 2

√

C3γ0‖x− x∗‖1,Ω
‖y‖

1,Ω
‖z‖

1,Ω

≤
(

2C3 + 2
√

C3γ0 r
)

‖y‖
1,Ω
‖z‖

1,Ω

=: C4(r) ‖y‖1,Ω
‖z‖

1,Ω
.

Remark 3. We henceforth assume that the r of Theorem 1 is so small that it is
less than 0.4 c3√

C3 γ0
. This can be always arranged by choosing r small enough.

Remark 4. The results of Lemma 3.1, Lemma 3.3, and Theorem 1 still hold

if we restrict ourselves to a subspace of VVV by assuming that x = xh ∈ B
h
(x∗, r),

y = yh ∈ Sh, and z = zh ∈ Sh.
Theorem 2. The nonquadratic functional, F(x; g), is coercive and continuous

for all x ∈ B(x∗, r), where r, c3, and C3 are defined as in Theorem 1:

1

2
c3‖x−x∗‖

2

1,Ω
≤ F(x; g) ≤

1

2
C3‖x−x∗‖

2

1,Ω
. (3.25)

Proof. For any x ∈ B(x∗, r) and some x̃ ∈ [x∗,x] ⊂ B(x∗, r), we have

F(x; g) = F(x∗; g) + F ′(x∗; g)[x− x∗] +
1

2
F ′′(x̃; g)[x− x∗,x− x∗].

The result now follows from the fact that F(x∗; g) = F ′(x∗; g)[x− x∗] = 0 (see (2.3)
for the second equality) and Theorem 1.

A similar result can be easily established for discrete space Sh.
Theorem 3. The functional norm,

√

F(xh; g)−F(xh
∗ ; g), is coercive and con-

tinuous for all xh ∈ B
h
(x∗, r), where r, c3, and C3 are defined as in Theorem 1:

1

2
c3‖x

h−xh
∗‖

2

1,Ω
≤ F(xh; g)−F(xh

∗ ; g) ≤
1

2
C3‖x

h−xh
∗‖

2

1,Ω
. (3.26)
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Proof. For any xh ∈ B
h
(x∗, r) and some x̃ ∈ [x∗,x

h] ⊂ B
h
(x∗, r), we have

F(xh; g)−F(xh
∗ ; g) = F ′(xh

∗ ; g)[xh − xh
∗ ] +

1

2
F ′′(x̃; g)[xh − xh

∗ ,xh − xh
∗ ].

From Definition 2.1, we know that F ′(xh
∗ ; g)[xh−xh

∗ ] =<L(xh
∗)−g,L′(xh

∗)[xh−xh
∗ ]>=

0, for all xh − xh
∗ ∈ S

h (see Remark 2). Hence, continuity and coercivity again follow
directly from Theorem 1.

4. Convergence. This section establishes unique minimizers of the functionals

we use in B(x∗, r), B
h
(x∗, r), and B

2h
(x∗, r) under the assumption that r and h are

sufficiently small. This is done in Lemmas 4.1, 4.2, and 4.3, respectively. Theorem
4 then shows that our coarse-grid correction and relaxation steps remain in a closed
H1-ball about x∗ and it establishes uniform convergence of our two-level PML scheme.

Lemma 4.1. Let x∗ be an isolated solution of (2.2) and r be defined as in Theorem
1. Then x∗ is the unique minimizer in B(x∗, r) of F(x; g). It is characterized by
F ′(x∗; g)[y] = 0, for all y ∈ VVV, that is, it is the unique critical point in B(x∗, r).

Proof. The first assertion follows from (3.25). That x∗ is a critical point follows
from (2.3). We thus only need to show that it is the only critical point in B(x∗, r),
that is, that F ′(x; g)[y] = 0 for all y ∈ VVV and x ∈ B(x∗, r) imply x = x∗. Under
these assumptions, for all y ∈ VVV, we have

0 = F ′(x; g)[y]−F ′(x∗; g)[y] = F ′′(x̃; g)[y,x−x∗],

for some x̃ ∈ [x∗,x] ⊂ B(x∗, r). With y = x−x∗ ∈ VVV and Theorem 1, we thus obtain

0 = F ′′(x̃; g)[x−x∗,x−x∗] ≥ c4‖x−x∗‖
2

1,Ω
.

Therefore, x = x∗ and the proof is complete.

Next, we prove the discrete analog to Lemma 4.1.

Lemma 4.2. Let x∗ be an isolated solution of (2.2). Let r, c4, and C4 be defined
as in Theorem 1 and assume that h is sufficiently small. Then there exists a unique

minimizer, xh
∗ , in B

h
(x∗, r) of F(x; g). It is characterized by ∇hF(xh

∗ ; g) = 0, that

is, it is the unique grid h critical point in B
h
(x∗, r).

Proof. For x = xh ∈ B
h
(x∗, r) ⊂ B(x∗, r), Theorem 2 yields

1

2
c4‖x

h − x∗‖
2

1,Ω
≤ F(xh; g) ≤

1

2
C4‖x

h − x∗‖
2

1,Ω
. (4.1)

We first prove that the minimizer over B
h
(x∗, r), which exists by compactness, is

actually in Bh(x∗, r). To this end, it suffices to show that there exist an xh ∈ Bh(x∗, r)
that has a smaller functional value than the minimum of F(x; g) on ∂Bh(x∗, r). To
prove uniqueness of the minimizer, we then use an argument similar to that in Lemma
4.1.

Any xh
∂ ∈ ∂Bh(x∗, r) must satisfy ‖xh

∂ − x∗‖
2

1,Ω
= r2. Hence, by (4.1), we have

F(xh
∂ ; g) ≥

1

2
c4‖x

h
∂ − x∗‖

2

1,Ω
=

1

2
c4r

2,
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for all xh
∂ ∈ ∂Bh(x∗, r). Now let r1 =

√

c4/C4 r and assume that h is so small that

B
h
(x∗, r1) is not empty. Again by (4.1), any xh ∈ Bh(x∗, r1) ⊂ B

h(x∗, r) must satisfy

F(xh; g) ≤
1

2
C4‖x

h − x∗‖
2

1,Ω
<

1

2
C4r

2
1 =

1

2
c4r

2 ≤ F(xh
∂ ; g).

Therefore, the minimizer, xh
∗ , of F(xh; g) over B

h
(x∗, r) must actually be in Bh(x∗, r).

Remark 2 confirms that it is a grid h critical point: ∇hF(xh
∗ ; g) = 0.

To prove uniqueness, note that any other minimizer, xh, in Bh(x∗, r) must be a
grid h critical point: ∇hF(xh; g) = 0. It now suffices to show that xh

∗ is the only grid
h critical point (which also proves the characterization assertion). To this end, note,
for all yh ∈ Sh, that

0 = <∇hF(xh; g),yh> − <∇hF(xh
∗ ; g),yh>

= F ′(xh; g)[yh]−F ′(xh
∗ ; g)[yh] = F ′′(x̃h; g)[yh,xh−xh

∗ ],

for some x̃h ∈ Bh(x∗, r). Again choosing yh = xh−xh
∗ ∈ S

h ⊂ VVV and using Theorem
1 yields

0 = F ′′(x̃h; g)[xh−xh
∗ ,xh−xh

∗ ] ≥ c4‖x
h−xh

∗‖
2

1,Ω
,

which establishes the result.

Lemma 4.3. Let r, c4, and C4 be defined as in Theorem 1 and choose any
r1 <

√

c4/C4 r. Then, for x ∈ B(x∗, r1), there exists a unique minimizer, x∗
2h =

argmin
x2h∈S2h,x+x2h∈B(x∗,r)F(x + x2h; g). If r is small enough, then this minimizer

is characterized by ∇2hF(x + x2h; g) = 0, with x + x2h ∈ B(x∗, r) that is, it is the
unique grid 2h critical point for which x+x2h stays in B(x∗, r). Thus, the result, xh

1
2

,

of Step 1 of PML stays in B
h
(x∗, r) for any initial guess, xh

0 , in B
h
(x∗, r1).

Proof. The minimizer, x2h
∗ , clearly exists by compactness. (Note that

{

x+S2h
}

∩

B(x∗, r) is a nonempty set because it contains x = x + 0.) To prove uniqueness and
the fact that x2h

∗ is a grid 2h critical point, first note that any x∂ ∈ ∂B(x∗, r) must,

by Theorem 2, satisfy F(x∂ ; g) ≥ 1
2c4‖x∂−x∗‖

2

1,Ω
= 1

2c4r
2. Then, with x ∈ B(x∗, r1),

again Theorem 2 implies that

F(x; g) ≤
1

2
C4‖x− x∗‖

2

1,Ω
≤

1

2
C4r

2
1 < F(x∂ ; g).

Thus, F(x + x∗
2h; g) ≤ F(x; g) < F(x∂ ; g), which implies that x + x∗

2h ∈ B(x∗, r).
Then x2h

∗ must satisfy the gradient condition, which follows by a similar standard
argument similar to that of Remark 2.

Uniqueness and the characterization assertion can be now established as in the
proofs of Lemmas 4.1 and 4.2. To this end, assume that there exists another minimizer,
x + x2h ∈ Bh(x∗, r), so that ∇2hF(x + x2h; g) = 0. It now suffices to show that
this grid 2h critical point condition implies that x2h = x2h

∗ (which also proves the
characterization assertion). To this end, note, for all y2h ∈ S2h, that

0 = <∇2hF(x + x2h; g),y2h> − <∇2hF(x + x∗
2h; g),y2h>

= F ′(x + x2h; g)[y2h]−F ′(x + x∗
2h; g)[y2h] = F ′′(x + x̃2h; g)[y2h,x2h−x∗

2h],
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for some x + x̃2h ∈ Bh(x∗, r). As before, this leads to

0 = F ′′(x + x̃2h; g)[x2h−x∗
2h,x2h−x∗

2h] ≥ c4‖x
2h−x∗

2h‖
2

1,Ω
,

which proves uniqueness and the characterization assertion.
The final claim follows simply by choosing x = xh and noting that we can choose

r > 0 so small that the nearest optimally corrected xh must be the one in B(x∗, r).

Theorem 4. Let r and r1 as in Lemma 4.3, define r0 =
√

c4/C4 r1, and choose
h and ω sufficiently small. Then, for any xh

0 ∈ B(x∗, r0), the PML iterates based on

either (2.8) or (2.9) remain in B
h
(x∗, r) and converge linearly with uniformly bounded

factor according to

F(xh
k+1; g)−F(xh

∗ ; g) ≤ κ
(

F(xh
k ; g)−F(xh

∗ ; g)
)

, k = 0, 1, 2, . . . ,

where κ ∈ [0, 1) depends only on Re, r, and Ω.
Proof. We omit this fairly straightforward but somewhat lengthy proof and

instead refer the reader to [10] for details.
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