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t. Algebrai
 multigrid (AMG) is 
urrently undergoing a resurgen
e in popularity, due inpart to the dramati
 in
rease in the need to solve physi
al problems posed on very large, unstru
turedgrids. While AMG has proved its usefulness on various problem types, it is not 
ommonly understoodhow wide a range of appli
ability the method has. In this study, we demonstrate that range ofappli
ability, while des
ribing some of the re
ent advan
es in AMG te
hnology. Moreover, in light ofthe imperatives of modern 
omputer environments, we also examine AMG in terms of algorithmi
s
alability. Finally, we show some of the situations in whi
h standard AMG does not work well, andindi
ate the 
urrent dire
tions taken by AMG resear
hers to alleviate these diÆ
ulties.Key words. algebrai
 multigrid, interpolation, unstru
tured meshes, s
alability1. Introdu
tion. Algebrai
 multigrid (AMG) was �rst introdu
ed in the early1980's [11, 8, 10, 12℄, and immediately attra
ted substantial interest [32, 28, 30, 29℄.Resear
h 
ontinued at a modest pa
e into the late 1980's and early 1990's [18, 14, 21,25, 20, 26, 22℄. Re
ently, however, there has been a major resurgen
e of interest in the�eld, for \
lassi
al" AMG as de�ned in [29℄, as well as for a host of other algebrai
-type multilevel methods [3, 16, 34, 6, 2, 4, 5, 15, 33, 17, 35, 36, 37℄. Largely, thisresurgen
e in AMG resear
h is due to the need to solve in
reasingly larger systems,with hundreds of millions or billions of unknowns, on unstru
tured grids. The sizeof these problems di
tates the use of large-s
ale parallel pro
essing, whi
h in turndemands algorithms that s
ale well as problem size in
reases. Two di�erent types ofs
alability are important. Implementation s
alability requires that a single iterationbe s
alable on a parallel 
omputer. Less 
ommonly dis
ussed is algorithmi
 s
alability,whi
h requires that the 
omputational work per iteration be a linear fun
tion of theproblem size and that the 
onvergen
e fa
tor per iteration be bounded below 1 withbound independent of problem size. This type of s
alability is a property of thealgorithm, independent of parallelism, but is a ne
essary 
ondition before a s
alableimplementation 
an be attained.Multigrid methods are well known to be s
alable (both types) for ellipti
 prob-lems on regular grids. However, many modern problems involve extremely 
omplexgeometries, making stru
tured geometri
 grids extremely diÆ
ult, if not impossible,to use. Appli
ation 
ode designers are turning in in
reasing numbers to very largeunstru
tured grids, and AMG is seen by many as one of the most promising methodsfor solving the large-s
ale problems that arise in this 
ontext.This study has four 
omponents. First, we examine the performan
e of \
lassi
al"AMG on a variety of problems having regular stru
ture, with the intent of determiningits robustness. Se
ond, we examine the performan
e of AMG on the same suite ofproblems, but now with unstru
tured grids and/or irregular domains. Third, westudy the algorithmi
 s
alability of AMG by examining its performan
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 Multigrid 2the problems using grids of in
reasing sizes. Finally, we introdu
e a new method for
omputing interpolation weights, and we show that in 
ertain troublesome 
ases it
an signi�
antly improve AMG performan
e.Our study di�ers from previous reports on the performan
e of AMG (e.g., [29, 30℄)primarily by our examination of algorithmi
 s
alability, our emphasis on unstru
turedgrids, and the introdu
tion of a new algorithm for 
omputing interpolation weights.In Se
tion 2, a des
ription of some details of the AMG algorithm is given to providean understanding of the results and later dis
ussion. In Se
tion 3, we present resultsof AMG applied to a range of symmetri
 s
alar problems, using �nite element dis-
retizations on stru
tured and unstru
tured 2D and 3D meshes. AMG is also testedon nonsymmetri
 problems, on both stru
tured and unstru
tured meshes, and the re-sults are presented in Se
tion 4. A version of AMG designed for systems of equationsis tested, with the fo
us on problems in elasti
ity. Results are dis
ussed in Se
tion5. In Se
tion 6, we introdu
e and report on tests of a new method for 
omputinginterpolation weights. We 
on
luding with some remarks in Se
tion 7.2. The S
alar AMG Algorithm. We begin by outlining the basi
 prin
iplesand te
hniques that 
omprise AMG. Detailed explanations may be found in [29℄.Consider a problem of the form Au = f ;(1)where A is an n � n matrix with entries aij . For 
onvenien
e, the indi
es are iden-ti�ed with grid points, so that ui denotes the value of u at point i, and the grid isdenoted by 
 = f1; 2; : : : ; ng. In any multigrid method, the 
entral idea is that errore not eliminated by relaxation must be removed by 
oarse-grid 
orre
tion. Applied toellipti
 problems, for example, simple relaxations (Ja
obi, Gauss-Seidel) redu
e highfrequen
y error 
omponents eÆ
iently, but are very slow at removing smooth 
ompo-nents. However, the smooth error that remains after relaxation 
an be approximateda

urately on a 
oarser grid. This is done by solving the residual equation Ae = ron a 
oarser grid, then interpolating the error ba
k to the �ne grid and using it to
orre
t the �ne-grid approximation. The 
oarse-grid problem itself is solved by a re-
ursive appli
ation of this method. One iteration of this pro
ess, pro
eeding throughall levels, is known as a multigrid 
y
le. In geometri
 multigrid, standard uniform
oarsening and linear interpolation are often used, so the main design task is to 
hoosea relaxation s
heme that redu
es errors the 
oarsening pro
ess 
annot approximate.One purpose of AMG is to free the solver from dependen
e on geometry, so AMGinstead �xes relaxation (normally Gauss-Seidel), and its main task is to determine a
oarsening pro
ess that approximates error that this relaxation 
annot redu
e.An underlying assumption in AMG is that smooth error is 
hara
terized by smallresiduals, that is, Ae � 0, whi
h is the basis for 
hoosing 
oarse grids and de�ninginterpolation weights. For simpli
ity of dis
ussion here, we assume that A is a sym-metri
 positive-de�nite M -matrix, with aii > 0; aij � 0 for j 6= i, and Paij � 0.This assumption is made for 
onvenien
e; AMG will frequently work well on matri
esthat are not M -matri
es. To de�ne any multigrid method, several 
omponents arerequired. Using supers
ripts to indi
ate level number, where 1 denotes the �nest levelso that A1 = A and 
1 = 
, the 
omponents that AMG needs are as follows:1. \Grids" 
1 � 
2 � : : : � 
M .2. Grid operators A1; A2; : : : ; AM .3. Grid transfer operators:Interpolation Ikk+1; k = 1; 2; : : :M � 1,
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tion Ik+1k ; k = 1; 2; : : :M � 1.4. Relaxation s
heme for ea
h level.On
e these 
omponents are de�ned, the re
ursively de�ned 
y
le is as follows:Algorithm: MV k(uk; fk). The (�1; �2) V-
y
le.If k =M , set uM = (AM )�1fM .Otherwise:Relax �1 times on Akuk = fk .Perform 
oarse grid 
orre
tion:Set uk+1 = 0; fk+1 = Ik+1k (fk �Akuk).\Solve" on level k+1withMV k+1(uk+1; fk+1).Corre
t the solution by uk  uk+Ikk+1uk+1.Relax �2 times on Akuk = fk.For this 
y
le to work eÆ
iently, relaxation and 
oarse-grid 
orre
tion must worktogether to e�e
tively redu
e all error 
omponents. This gives two prin
iples thatguide the 
hoi
e of the 
omponents:P1: Error 
omponents not eÆ
iently redu
ed by relaxation must bewell approximated by the range of interpolation.P2: The 
oarse-grid problem must provide a good approximation to�ne-grid error in the range of interpolation.Ea
h of these a�e
ts a di�erent set of 
omponents: given a relaxation s
heme,P1 determines the 
oarse grids and interpolation, while P2 a�e
ts restri
tion andthe 
oarse grid operators. In order to satisfy P1, AMG takes an algebrai
 approa
h:relaxation is �xed, and the 
oarse grid and interpolation are automati
ally 
hosen sothat the range of the interpolation operator a

urately approximates slowly dimin-ishing error 
omponents (whi
h may not always appear to be \smooth" in the usualsense). P2 is satis�ed by de�ning restri
tion and the 
oarse-grid operator by theGalerkin formulation:Ik+1k = �Ikk+1�T and Ak+1 = Ik+1k AkIkk+1:(2)When A is symmetri
 positive de�nite, this ensures that the 
orre
tion from theexa
t solution of the 
oarse-grid problem is the best approximation in the range ofinterpolation [23℄, where \best" is meant in the A-norm: by jjvjjA � hAv;vi1=2 .The 
hoi
e of 
omponents in AMG is done in a separate prepro
essing step:AMG Setup Phase:1. Set k = 1.2. Partition 
k into disjoint sets Ck and F k.(a) Set 
k+1 = Ck .(b) De�ne interpolation Ikk+1.3. Set Ik+1k = �Ikk+1�T and Ak+1 = Ik+1k AkIkk+1.4. If 
k+1 is small enough, setM = k+1 and stop. Otherwise,set k = k + 1 and go to step 2.Step 2 is the 
ore of the AMG setup pro
ess. Sin
e the fo
us is on 
oarsening aparti
ular level k, su
h supers
ripts are omitted here and 
 and f are substituted fork + 1 and k where ne
essary to avoid 
onfusion. The goal of the setup phase is to
hoose the set C of 
oarse-grid points and, for ea
h �ne-grid point i 2 F � 
 � C,small set Ci � C of interpolating points. Interpolation is then of the form:
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 u
�i =8<: u
i if i 2 C;Xj2Ci wiju
j if i 2 F:(3) 2.1. De�ning Interpolation Weights. To de�ne the interpolation weightswij , re
all that slow 
onvergen
e is equivalent to small residuals, Ae � 0. Thus,we fo
us on errors satisfying aiiei � �Xj 6=i aijej :(4)Now, for any aij that is relatively small, we 
ould substitute ei for ej in (4) andthis approximate relation would still hold. This motivates the de�nition of the setof dependen
ies of a point i, denoted by Si, whi
h 
onsists of the set of points j forwhi
h aij is large in some sense. Hen
e, i depends on su
h j be
ause, to satisfy the ithequation, the value of ui is a�e
ted more by the value of uj than by other variables.The de�nition used in AMG isSi � �j 6= i : �aij � �maxk 6=i (�aik)� ;(5)with � typi
ally set to be 0.25. We also de�ne the set STi � fj : i 2 Sjg, that is, theset of points j that depend on point i, and we say that STi is the set of in
uen
es ofpoint i. Note: our terminology here di�ers from the 
lassi
al use in [29℄, whi
h refersto i as being strongly 
onne
ted to or strongly dependent on j if j 2 Si and whi
h usesno spe
i�
 terminology for j 2 STi .A basi
 premise of AMG is that relaxation smoothes the error in the dire
tion ofin
uen
e. Hen
e, we may sele
t Ci = Si \ C as the set of interpolation points for i,and adhere to the following 
riterion while 
hoosing C and F :P3: For ea
h i 2 F , ea
h j 2 Si is either in C or Sj \ Ci 6= ;.That is, if i is a �ne point, then the points in
uen
ing i must either be 
oarse pointsor must themselves depend on the 
oarse points used to interpolate ui. This allowsapproximations ne
essary to de�ne interpolation. For i 2 F , (4) 
an be rewritten as:aiiei � �Xk2Ci aikek �Xj2=Ci aijej :(6)AMG interpolation is de�ned by making the following approximation in (6):8j 2=Ci; ej � 8>>>>>><>>>>>>: ei if j 2 SiXk2Ci ajkekXk2Ci ajk otherwise.(7)Substituting this into (6) and solving for ei gives the desired interpolation weights forpoint i 2 F .
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ting the Coarse Grid. The 
oarse grid is 
hosen to satisfy the 
ri-terion above, while attempting to 
ontrol its size. We employ the two-stage pro
essdes
ribed in [29℄, modi�ed slightly to re
e
t our modi�ed terminology. The grid is�rst \
olored", providing a tentative C/F 
hoi
e. Essentially, a point with the largestnumber of in
uen
es (\in
uen
e 
ount") is 
olored as a C point. The points depend-ing on this C point are 
olored as F points. Other points in
uen
ing these F pointsare more likely to be useful as C points, so their in
uen
e 
ount is in
reased. Thepro
ess is repeated until all points are either C or F points.Details of the initial C=F 
hoi
e are as follows:Repeat until U = ;:Set C = ;; F = ;; U = 
k. Set �i = jSTi j (the number ofpoints depending on the point i).Pi
k an i 2 U with maximal �i. Set C = CTfig andU = U � fig.For all j 2 STi (points depending on fig) do:Set F = F Sfjg and U = U � fjg.For all k 2 Sj TU set �k = �k +1 (In
rement the� for points that in
uen
e the new F -points).For all j 2 SiTU set �j = �j � 1Next, a se
ond pass is made, in whi
h some F points may be re
olored as C pointsto ensure that P3 is satis�ed. In this pass, ea
h F -point i is examined. The 
oarseinterpolatory set Ci = SiSC is de�ned. Then, if i depends on another F -point, j,the points in
uen
ing j are s
anned, to see if any of them are in Ci. If this is not the
ase then j is tentatively 
onverted into a C-point and added to Ci. The dependen
iesof i are then examined anew. If all F -points depending on i now depend on a pointin Ci then j is permanently made a C-point and the algorithm pro
eeds to the nextF -point and repeats. If, however, the algorithm �nds another F -point dependent oni that is not dependent on a point in Ci then i itself is made into a C-point and jreturned to the pool of F -points. This pro
edure is followed to minimize the numberof F -points that are 
onverted into C-points.We make a brief 
omment about the 
omputational and storage 
osts of thesetup phase. Unlike geometri
 multigrid, these 
osts 
annot be predi
ted pre
isely.Instead, 
omputational 
ost must be estimated based on the average \sten
il size"over all grids, the average number of interpolation points per F -point, the ratio of thetotal number of gridpoints on all grids to the number of points on the �ne grid (grid
omplexity), and the ratio of the number of nonzero entries in all matri
es to that ofthe �ne-grid matrix (operator 
omplexity). While a detailed analysis is beyond thes
ope of this work [29℄, a good rule of thumb is that the 
omputational e�ort for thesetup phase is typi
ally equivalent to between four and ten V -
y
les.3. Results for Symmetri
 Problems. In this se
tion, results for AMG appliedto symmetri
 s
alar problems are presented. Initially, 
onstant-
oeÆ
ient di�usionproblems in 2D are tested as a baseline for 
omparison as we begin to introdu
e
ompli
ations, in
luding unstru
tured meshes, irregular domains, and anisotropi
 anddis
ontinuous 
oeÆ
ients. Results for 3D problems follow. All problems are run usingthe same AMG solver with �xed parameters. On many problems, it is possible toimprove our results by tuning some of the input parameters (there are many), butthe purpose here is to show AMG's basi
 behavior and robustness over a range ofproblems.The primary indi
ator of the speed of the algorithm is the asymptoti
 
onvergen
e
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tor per 
y
le. This is determined by applying 20 
y
les to the homogeneous prob-lem, starting with a random initial guess, then measuring the redu
tion in the normof the residual from one 
y
le to the next (we use the homogeneous problem to avoid
ontamination by ma
hine representation). Generally, this ratio starts out very smallfor the �rst few 
y
les, then in
reases to some asymptoti
 value after 5-10 
y
les,when the most slowly 
onverging 
omponents be
ome dominant. This asymptoti
value is also a good indi
ator of the a
tual error redu
tion from one 
y
le to the next.We use the 2-norm of the residual, although it is easy to show that the asymptoti

onvergen
e fa
tor is just the spe
tral radius of the AMG V -
y
le iteration operator,and hen
e is independent of the 
hoi
e of norm.The times given are for the setup and a single (1,1) V -
y
le. Setup time is whatit takes to 
hoose the 
oarser grids, de�ne interpolation, and 
ompute the 
oarse gridmatri
es. Cy
le time is for one 
y
le, not the full solution time. Three ma
hines areused in this study. The majority of the smaller tests are performed on a Pentium166MHz PC, although some are performed on a Sun Spar
 Ultra 1. For the largerproblems that demonstrate s
alability, we use a DEC Alpha. For this reason, timingsshould be 
ompared only within individual problems. Additionally, timings for thesmallest problems 
an have a high relative error, so the larger tests should give abetter pi
ture of performan
e. Grid 
omplexity is de�ned as Pnk=n1, where nk isthe number of grid points on level k. This gives an idea of how qui
kly the gridsare redu
ed in size. For 
omparison, in standard multigrid, the number of points isredu
ed by a fa
tor of 4 in 2D and 8 in 3D, yielding grid 
omplexities of 4/3 and8/7, respe
tively. AMG tends to 
oarsen more slowly. Operator 
omplexity, whi
h isa better indi
ator of the work per 
y
le, is de�ned as P rknk=r1n1, where rk is theaverage number of non-zero entries per row (or \sten
il size") on level k. Thus, theoperator 
omplexity is the ratio of the total number of nonzero matrix entries on alllevels to those on the �nest level. Sin
e relaxation work is proportional to the numberof matrix entries, this gives a good idea of the total amount of work in relaxationrelative to relaxation work on the �nest grid, and also of the total storage neededrelative to that required for the �ne grid matrix. In geometri
 multigrid, the grid andoperator 
omplexities are equal, but in AMG, operator 
omplexity is usually highersin
e average sten
il sizes tend to grow somewhat on 
oarser levels. Note that the
onvergen
e fa
tors and 
omplexities are entirely independent of the spe
i�
 ma
hineon whi
h a test is performed.In the tests reported here, the fo
us is on �nite element dis
retizations ofr � (Dru) = f with D = � d11(x; y) d12(x; y)d21(x; y) d22(x; y) � :Several di�erent meshes and di�usion 
oeÆ
ients D are used.3.1. Regular domains, stru
tured and unstru
tured grids. The �rst �veproblems are 2D Poisson equations, with d11 = d22 = 1:0 and d12 = d21 = 0:0.Di�erent domains and meshes are used to demonstrate the behavior of AMG withsimple equations.We begin with the simplest 2D model problem. The su

ess of AMG on theregular-grid Poisson problem is well-do
umented [30, 28, 29℄, so our purpose here ismore to assess its s
alability.Problem 1 This is a simple 5-point Lapla
ian operator with homogeneous Diri
hletboundary 
onditions on the unit square. The experiment is run for uniform meshes
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Fig. 1. Top Left: Convergen
e fa
tors, as a fun
tion of number of mesh points, for Problem 1the uniform-mesh 5-point Lapla
ian. Top Right: Log-log plots of setup times (
ir
les) and 
y
le times(triangles) for the uniform-mesh 5-point Lapla
ian. The dotted line, for referen
e, shows perfe
tlylinear s
aling. Bottom: Operator (
ir
les) and grid (triangle) 
omplexities for the uniform-mesh5-point Lapla
ian.with n�n interior grid points, yielding mesh sizes n2 = N = 289, 1089, 2500, 10000,90000, 250000, and 490000.Results for Problem 1 are displayed in Figure 1. The 
onvergen
e fa
tor (per 
y-
le) is very stable at approximately 0.04 for all problem sizes. Both the setup and 
y
letime are very nearly linear in N (
ompare with the dotted line depi
ting a perfe
tlylinear hypotheti
al data set). Here, setup time averages roughly the time of 6 
y
les.As noted before, the operator 
omplexities are higher than the 
orresponding grid
omplexities, but both appear to be una�e
ted by problem size. These data indi
atethat AMG (applied to the uniform-mesh Lapla
ian) is algorithmi
ally s
alable: the
omputational work is O(N) per 
y
le and the 
onvergen
e fa
tor is O(1) per 
y
le.An important 
omponent of our study is to determine to what extent this algorithmi
s
alability is retained as we in
rease problem 
omplexity.
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 Multigrid 8Problem 2 This is the same equation as Problem 1 (��u = f), but now dis
retizedon an unstru
tured triangular mesh. These meshes are obtained from uniform trian-gulations by randomly 
hoosing 15-20% of the nodes and \
ollapsing" them to neigh-boring nodes, then smoothing the resulting mesh. The resulting operators might berepresented by M -matri
es in some 
ases, but this is not generally the 
ase. We usemeshes with N = 248; 912; 3506; 13755, and 54518. A typi
al example is shown attop left in Figure 2.Results of the experiments are displayed in Figure 2. On the unstru
tured meshes,
onvergen
e fa
tors tend to show some dependen
e on mesh size, growing to around0.35 on the �nest grid. It should be noted, however, that these grids tend to be lessstru
tured than many found in pra
ti
e, and no 
are was taken to ensure a \good"mesh; the meshes may have di�ering 
hara
teristi
s (su
h as aspe
t ratios), as there isa large degree of randomness in their 
onstru
tion. Complexities are also higher withthe unstru
tured meshes, and the setup time in
reases 
orrespondingly. The mainpoint here is that AMG 
an deal e�e
tively with unstru
tured meshes without toomu
h degradation in 
onvergen
e over the uniform 
ase.3.2. Irregular domains. We 
ontinue to use the Lapla
ian, but now with irreg-ular domains. Sin
e our emphasis here is the e�e
ts of this irregularity, we restri
t ourtests to two representative mesh sizes that give just a snapshot of algorithm s
alability.Problem 3 The 
omputational domain is an unstru
tured triangular dis
retizationof the torus 0:05 �px2 + y2 � 0:5. Two di�erent mesh sizes were used, resulting ingrids with N = 14700 and 58445. Diri
hlet boundary 
onditions around the hole areimposed, with Neumann 
onditions on the outer boundary.Problem 4 The domain for this problem is shown in Figure 3. The boundary 
on-ditions are Neumann ex
ept that a Diri
hlet 
ondition is imposed around the smallhole on the right. The meshes are uniform, with h = 1=128 and 1=256, resulting inmeshes with N = 11419 and 44227, respe
tively. The domain does not easily admitmu
h 
oarser meshes.Problem 5 The domain for this problem is shown on the bottom in Figure 3. Diri
h-let 
onditions are imposed on the exterior boundary, and Neumann 
onditions are onthe interior boundaries. A triangular unstru
tured mesh is used.Results for Problems 3{5 are given in Table 1. Among these problems, Problem 3has the simplest domain, but the least stru
tured mesh and the slowest 
onvergen
e.This indi
ates that domain 
on�guration generally has little e�e
t on AMG behavior,while the stru
ture (and perhaps the quality) of the mesh is more important.Table 1. Results for Problems 3{5.Poisson problem on unstru
tured meshes, irregular domainsConvergen
e Setup time Cy
le time Grid OperatorProblem N fa
tor/
y
le (se
) (se
) 
omplexity 
omplexity3 14700 0.232 2.530 0.370 1.840 3.1003 58445 0.276 10.710 1.450 1.820 3.1104 11419 0.134 0.990 0.160 1.690 2.2304 44227 0.162 3.840 0.660 1.680 2.2305 7971 0.122 1.370 0.170 1.720 2.5005 30320 0.108 4.720 0.550 1.710 2.460
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Fig. 2. Top Left: A typi
al unstru
tured grid for Problem 2, obtained by randomly deleting15% of the nodes in a regular grid and smoothing the result. Top Right: Convergen
e fa
tors, asa fun
tion of number of mesh points, for the unstru
tured-mesh 5-point Lapla
ian. Bottom Left:Log-log plots of setup times (
ir
les) and 
y
le times (triangles) for the unstru
tured-grid 5-pointLapla
ian. The dotted line, for referen
e, shows perfe
tly linear s
aling. Bottom Right: Operator(
ir
les) and grid (triangle) 
omplexities for the unstru
tured-grid 5-point Lapla
ian.
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Fig. 3. Domain (Top Left) and typi
al grid (Top Right) for Problem 4. Note that the meshsize ne
essary to display the triangulation is too 
oarse to observe the Diri
hlet hole. Finer meshesare used for the 
al
ulations. Bottom: Typi
al grid for Problem 5.
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 di�usion. The next problem set deals with isotropi
 di�usion:d11 = d22 = d(x; y) and d12 = d21 = 0. Dis
ontinuous d(x; y) 
an 
ause problems formany solution methods, in
luding standard multigrid methods, although it is possibleto get good results either by aligning the dis
ontinuities along 
oarse grid lines, orby using operator-dependent interpolation [1℄. In AMG, nothing spe
ial is required,sin
e it is based on operator-dependent interpolation. The problems are 
ategorizeda

ording to the di�usion 
oeÆ
ient used. The unit square is dis
retized on fourmeshes: two stru
tured meshes with N = 16642 and 66049, and two unstru
turedmeshes, with N = 13755 and 54518. The di�usion 
oeÆ
ients are de�ned in terms ofa parameter, 
, allowed to be either 10 or 1000, as follows:Problem 6 d(x; y) = 1:0 + 
jx� yj.Problem 7 d(x; y) = � 1:0 x � 0:5
 x > 0:5:Problem 8 d(x; y) = � 1:0 0:125 � max (jx� 0:5j; jy � 0:5j) � 0:25;
 otherwise:Problem 9 d(x; y) = � 1:0 0:125 �p(x� 0:5)2 + (y � 0:5)2 � 0:25;
 otherwise:Results for these problems are presented in Table 2, whi
h 
ontains observed
onvergen
e fa
tors and operator 
omplexities for the various 
ombinations of gridsize and type, di�usion 
oeÆ
ient fun
tion, and dis
ontinuity jump size. The overallresults are fairly predi
table. Convergen
e fa
tors are fairly uniform. On the stru
-tured meshes, they tend to grow slightly with in
reasing grid size. They are noti
eablylarger for unstru
tured grids, and they appear to grow somewhat with in
reasing gridsize. (As noted before, 
omparison among unstru
tured grids of various sizes musttake into a

ount that their generation involves some randomness, so they may di�erin important ways.) The 
onvergen
e fa
tor does not seem to depend signi�
antlyon the size of the jump in the di�usion 
oeÆ
ient. In many 
ases, results were bet-ter with 
 = 1000 than with 
 = 10. Indeed, AMG has been applied su

essfullyto problems with mu
h larger jumps [28℄; see also Problem 17. Note that there areonly minor variations in operator 
omplexity for the di�erent problems and di�erentgrid sizes. The only signi�
ant e�e
t on operator 
omplexity appears to be whetherthe grid is stru
tured or unstru
tured, with the latter showing 
omplexity in
reasesof about 30{40%. It should be noted, however, that even in these 
ases, the entireoperator hierar
hy 
an be stored in just over three times the storage required for the�ne-grid alone.
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ontinuous 
oeÆ
ientsUniform mesh size Unstru
tured mesh sizeProblem 16642 66049 13755 54518# 
 
onv. 
mplxty 
onv. 
mplxty 
onv. 
mplxty 
onv. 
mplxty6 10 0.063 2.2 0.095 2.2 0.290 3.35 0.307 3.396 1000 0.097 2.21 0.180 2.2 0.264 3.32 0.369 3.367 10 0.111 2.25 0.126 2.23 0.266 3.29 0.287 3.387 1000 0.123 2.25 0.144 2.23 0.254 3.28 0.250 3.378 10 0.138 2.32 0.159 2.27 0.303 3.28 0.320 3.378 1000 0.220 2.30 0.188 2.26 0.286 3.32 0.336 3.389 10 0.165 2.33 0.179 2.28 0.280 3.32 0.311 3.389 1000 0.171 2.35 0.168 2.30 0.234 3.31 0.298 3.40Problems 10{13 are designed to examine the 
ase in whi
h the di�usion 
oeÆ
ientis dis
ontinuous and to determine whether the \s
ale" of the dis
ontinuous regionsa�e
ts performan
e. A

ordingly, Problems 10{12 use a \
he
kerboard" pattern:d(x; y) =8>><>>: 1 if i+ j is even and in � x < i+ 1n ; jn � y < j + 1n ;
 if i+ j is odd and in � x < i+ 1n ; jn � y < j + 1n ;where i; j = 0; 1; : : : ; n. Spe
i�
ally,Problem 10 n = 2.Problem 11 n = 10.Problem 12 n = 50.For the last problem of this group, we haveProblem 13 d(x; y) = random(x; y).Results for Problems 10{13 are displayed in Table 3. The overall trend is similarto the results for Problems 6{9, showing 
onvergen
e fa
tors that grow slightly withproblem size and that are noti
eably larger for unstru
tured grids.Table 3. Results for Problems 10{13.Poisson problem, variable and dis
ontinuous 
oeÆ
ientsUniform mesh size Unstru
tured mesh sizeProblem 16642 66049 13755 54518# 
 
onv. 
mplxty 
onv. 
mplxty 
onv. 
mplxty 
onv. 
mplxty10 10 0.120 2.28 0.135 2.25 0.266 3.29 0.283 3.3710 1000 0.110 2.28 0.119 2.24 0.252 3.28 0.290 3.3711 10 0.225 2.74 0.275 2.56 0.295 3.25 0.328 3.3411 1000 0.230 2.76 0.274 2.57 0.263 3.21 0.321 3.3212 10 0.255 2.83 0.289 2.98 0.302 2.81 0.336 3.1112 1000 0.238 2.67 0.283 2.98 0.263 2.66 0.403 3.0113 10 0.199 2.86 0.290 2.94 0.272 3.23 0.324 3.3113 1000 0.255 2.97 0.287 3.04 0.288 3.04 0.319 3.12
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 di�usion problems are obtained for Problem 6,where the 
oeÆ
ient is 
ontinuous. The worst 
onvergen
e fa
tor is obtained for the50 � 50 \
he
kerboard" pattern of Problem 12. Note that AMG performs well onProblem 8, where \smooth" fun
tions are approximately 
onstant in the 
enter of theregion, zero in the high-di�usion zone near the boundary, and smoothly varying in be-tween. Good interpolation in the low-di�usion band is essential to good 
onvergen
e.Overall, AMG appears to work quite well with dis
ontinuous di�usion 
oeÆ
ients,even when they vary randomly by a large fa
tor from point to point, as in Problem13. 3.4. Anisotropi
 di�usion. The next series of problems deals with anisotropi
di�usion, whi
h 
an arise in several ways. Anisotropy 
an be introdu
ed by the meshbeing re�ned di�erently in ea
h dire
tions, perhaps to resolve a boundary layer orsome other lo
al phenomenon. Another 
ase is a tensor produ
t grid used in order tore�ne some area [x0; x1℄� [y0; y1℄ , with the mesh size small for x 2 [x0; x1℄ and for y 2[y0; y1℄, but large elsewhere. This maintains a logi
ally re
tangular mesh, but 
ausesanisotropi
 dis
retizations in di�erent parts of the domain. This is relatively easy todeal with in geometri
 multigrid, where line relaxation and/or semi-
oarsening 
anbe used [9℄. Non-aligned anisotropy, whi
h is more diÆ
ult to handle with standardmultigrid, arises from the operator itself, su
h as the 
ase of the full potential operatorin transoni
 
ows. The performan
e of AMG on grid-indu
ed (aligned) anisotropyhas been reported previously [29℄, so we instead fo
us here on non-aligned anisotropy.Both types of anisotropy 
an be written in terms of the di�usion equation using the
oeÆ
ient matrix:D(x; y) = � 1 00 1 �� (1� �) � 
os2 � � 
os � sin �� 
os � sin � sin2 � � :When � is 
onstant, this gives the operator ����+��� , where � is in the dire
tion �. Ona re
tangular grid with mesh sizes hx and hy, the usual Poisson equation 
orrespondsto the di�usion equation with � = 0 and � = h2y=h2x.Problem 14 This problem features a non-aligned anisotropi
 operator on the unitsquare, with Diri
hlet boundary 
onditions at y = 0 and y = 1 and Neumann 
ondi-tions on the other two sides. The 
ases � = 0:1 and � = 0:001 were both examinedwith � = 0; �=6; �=5, and �=4. Ea
h su
h 
ombination is dis
retized on a uniformsquare mesh (with bilinear elements) and both uniform and unstru
tured triangularmeshes (with linear elements). The uniform meshes have N = 16642 and 66049, whilethe unstru
tured meshes have N = 13755 and 54518.Convergen
e fa
tors for Problem 14, as shown in Figure 4, generally degrade within
reasing �. This is to be expe
ted, as it indi
ates lessened alignment of anisotropywith the grid dire
tions. The strong anisotropy 
ase yields 
onvergen
e fa
tors ashigh as 0.745. As noted above, the non-aligned 
ase is very diÆ
ult, even for stan-dard multigrid, and is the subje
t of ongoing study. One en
ouraging result is thatthe unstru
tured grid formulations are relatively insensitive to grid anisotropy, with
onvergen
e fa
tors that hover between 0.3 and 0.5 in all 
ases ex
ept � = 0. Overall,these results indi
ate that AMG is rather robust for anisotropi
 problems, although
onvergen
e fa
tors are somewhat higher than those typi
ally obtained with AMG onisotropi
 problems.
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e fa
tor vs. � Convergen
e fa
tor vs. �� = 0:01 � = 0:001
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Fig. 4. Convergen
e fa
tors, plotted as a fun
tion of anisotropy dire
tion �. Left: Moderateanisotropy, � = 0:01 Right: Strong anisotropy, � = 0:001. In ea
h plot, the solid lines are theuniform meshes with square dis
retizations, the dotted lines are uniform meshes with triangulardis
retizations, and the dashed lines are the unstru
tured triangulations. In ea
h 
ase, the largergrid size is indi
ated by a symbol (\o", \+", or \�").Problem 15 We use the operator of Problem 4, r � (Dru), but withD(x; y) = 1r2 � �x2 + y2 �xy�xy x2 + �y2 � ;r2 = x2 + y2, and � = 100. This yields a dis
retization su
h that, on any 
ir
le
entered at the origin, there are dependen
ies in the tangential dire
tion, but none inthe radial dire
tion.This problem is very diÆ
ult to solve by 
onventional methods. Using the samemeshes as in Problem 14, AMG produ
ed the 
onvergen
e fa
tors given in Table 4.Table 4. Results for Problem 15: Cir
ular di�usion 
oeÆ
ientuniform mesh (square) uniform mesh (triangular) unstru
tured meshN = 16642 N = 66049 N = 16641 N = 66049 N = 13755 N = 545180.619 0.534 0.764 0.674 0.845 0.840The 
onvergen
e fa
tors illustrate the diÆ
ulty with this problem, whi
h 
annot behandled easily by geometri
 methods, even on regular meshes. A polar-
oordinatemesh would allow blo
k relaxation over strongly 
oupled points, but would su�er fromthe diÆ
ulties of polar-
oordinate grids (e.g., singularity at the origin) and would beuseless for more general anisotropies. While 
onvergen
e of AMG here is mu
h slowerthan what we normally asso
iate with multigrid methods, this example shows thatAMG 
an be useful even for extremely diÆ
ult problems.3.5. 3D problems. Turning our attention to three dimensions, we do not expe
tspe
ial diÆ
ulties here, sin
e AMG is based on the algebrai
 relationships betweenthe variables.
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ube. Dis
retization is bytrilinear �nite elements on a re
tangular mesh. Diri
hlet boundary 
onditions areimposed at y = 0 and y = 1, and Neumann 
onditions are imposed at the otherboundaries. Mesh line spa
ing and the number of mesh intervals were both variedto produ
e several grids with di�erent spa
ings and extents in the three 
oordinatedire
tions. The various 
ombinations of mesh sizes used, 
onvergen
e fa
tors, andoperator 
omplexities are shown in Table 5.Table 5. Results for Problem 16.3D Poisson problem, regular re
tangular meshConvergen
e OperatorNx hx Ny hy Nz hz N fa
tor/
y
le Complexity10 1/10 10 1/10 10 1/10 1089 0.050 4.1020 1/20 20 1/20 20 1/20 8379 0.064 5.2125 1/25 25 1/25 25 1/25 16224 0.068 5.2620 1/20 20 1/20 20 1/200 8379 0.315 1.7520 1/20 20 1/200 20 1/200 8379 0.151 1.2820 1/200 20 1/20 20 1/200 8379 0.171 1.3120 1/200 20 1/20 20 1/2000 8379 0.324 1.75Problem 17 This is a 3D unstru
tured mesh problem, generated by a 
ode used atLawren
e Livermore National Laboratory, for the di�usion problem r�(a(~x)ru(~x)) =g(~x). The domain is a segment of a sphere, from r = 0:02 to r = 0:1, � = 0 to �=2,and � = �=4 to �=2. The 
oeÆ
ient a(~x) is a large 
onstant for r � 0:05 and a small
onstant for r > 0:05, with a step dis
ontinuity of 1:0�1026. The boundaries r = 0:02and r = 0:01 are Diri
hlet, while the boundaries � = �=4 and � = �=2 are surfa
es ofsymmetry. Dis
retization is by �nite elements using hexahedral elements.Figure 5 shows the lo
ations of the nodes at the element 
orners for one of the prob-lems. Three problem sizes are given, with N = 500, 4000, and 8000. Convergen
efa
tors and operator 
omplexities for these problems are given in Table 6.Table 6. Results for Problem 17.3D unstru
tured di�usion problemConvergen
e OperatorN fa
tor/
y
le 
omplexity500 0.070 1.994000 0.165 2.498000 0.166 2.84AMG apparently works quite well for 3D problems, in
luding those with dis
on-tinuous 
oeÆ
ients. The 
onvergen
e fa
tors are good in all 
ases. Complexity variessigni�
antly, with the highest values for the uniform grids, but de
reasing markedlywith in
reasing grid anisotropy. This may be taken as further eviden
e that AMGautomati
ally takes advantage of dire
tions of in
uen
e.Overall, AMG performed well on this suite of symmetri
 s
alar test problems.Many of these problems are designed to be very diÆ
ult, often unrealisti
ally so,espe
ially those with the 
ir
ular anisotropi
 di�usion pattern and the random di�u-sion 
oeÆ
ients. Re
all that the same AMG algorithm, with no parameter tuning,was used in all 
ases. There are a number of tools for in
reasing the eÆ
ien
y ofAMG, espe
ially on symmetri
 problems, that have proved useful in many 
ases. One
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Fig. 5. Nodes at element 
orners, 3D di�usion problem. Top Left: View of all the nodelo
ations. Top Right: View from dire
tly overhead, showing radial lines of nodes in the azimuthaldire
tion. Bottom: Distribution of nodes within a plane of 
onstant azimuth.
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alled V ? 
y
le [30℄, in whi
h the 
oarse-grid 
orre
tions are multiplied byan optimal parameter, determined by minimizing the A-norm of the 
orre
ted error.Another, whi
h has been su

essful in applying AMG to Maxwell's equations [27℄, isto use an outer 
onjugate gradient iteration, with AMG 
y
ling as a pre
onditioner.Often, when AMG fails to perform well, the problem lies in a small number of 
om-ponents that are not redu
ed eÆ
iently by relaxation or 
oarse-grid 
orre
tion, and
onjugate gradients 
an be very eÆ
ient in su
h 
ases. Other methods for improvingeÆ
ien
y in
lude the F�
y
le [7, 31℄ and the full multigrid (FMG) method, whoseappli
ability to AMG is the subje
t for future resear
h.4. AMG applied to Nonsymmetri
 S
alar Problems. Although mu
h ofthe motivation and theory for AMG is based on symmetry of the matrix, this is notat all a requirement for good 
onvergen
e behavior. Mildly nonsymmetri
 problemsbehave essentially like their symmetri
 
ounterparts. Su
h 
ases arise when a nonsym-metri
 dis
retization of a symmetri
 problem is used or when the original problem ispredominantly ellipti
. An important requirement for 
urrent versions of AMG is thatpoint Gauss-Seidel relaxation 
onverge, however slowly. Thus, 
entral di�eren
ing of�rst-order terms, when they dominate, 
annot be used be
ause of severe loss of diag-onal dominan
e. Even in these 
ases, su

essful versions of AMG 
an be developedusing Ka
zmarz relaxation [9℄. Nevertheless, we restri
t ourselves here to upstreamdi�eren
ing so that we 
an retain our use of Gauss-Seidel relaxation.Problem 18 This is a 
onve
tion-di�usion problem of the form��u+ 
os �ux + sin �uy = f;with Diri
hlet boundary 
onditions. Triangular meshes are used, both stru
tured(N = 16642 and 66049) and unstru
tured (N = 13755 and 54518). The di�usion termis dis
retized by �nite elements. The 
onve
tion term is dis
retized using upstreamdi�eren
ing, that is, the integral of the 
onve
tion term is 
omputed over the triangleand added to the equation 
orresponding to the node with the largest 
oeÆ
ient (thenode \most upstream"). Note that this 
an result in a matrix that has o�-diagonalentries of both signs. Two 
hoi
es for � are employed: � = 0:1 and � = 0:0001. Testsare 
ondu
ted with � = k�=8 for k = 0; 1; : : : ; 15.Results are presented in Figure 6. The 
urves in the top left graph are for � = 0:1; thestru
tured grid results are displayed with solid lines, and the unstru
tured-grid resultsare displayed with dashed lines. For ea
h pair of 
urves, the 
urve with the marker (\o"or \�") indi
ates the mesh with larger N . The 
onve
tion-dominated 
ase � = 0:0001is shown at the top right (stru
tured grids) and on the bottom (unstru
tured grids).In ea
h 
ase, the smaller N is shown with solid lines and the larger N with dashedlines. Note that 
onvergen
e is generally good and fairly uniform, parti
ularly for theunstru
tured 
ases. Results on the smaller uniform mesh are espe
ially good when the
ow is aligned with the dire
tions � = 0; �=4, or �=2. This is due to the triangulation:to obtain the uniform mesh, the domain is partitioned into squares, and then ea
hsquare is split into two triangles, with the diagonal going from the lower left to theupper right; the \good" dire
tions are aligned with the edges of the triangles. Thisalso has an e�e
t on the quality of the dis
retization, and on 
onvergen
e, when the
ow is in the dire
tion 3�=4 and 7�=4. Here, the dis
retization used for the 
onve
tionterm 
auses a rather severe loss of positivity in the o�-diagonals. This is more thefault of the dis
retization than AMG. For � = 11�=8 with the smaller uniform mesh,
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Convergen
e fa
tor vs. � Convergen
e fa
tor vs. �� = 0:1 � = 0:0001, stru
tured grid
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Convergen
e fa
tor vs. �� = 0:0001, unstru
tured grid
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Fig. 6. Convergen
e fa
tors, plotted as a fun
tion of dire
tion, �, for the nonsymmetri
 prob-lem. Top Left: Weaker 
onve
tion 
ase, � = 0:1 The solid lines are the uniform meshes, and thedashed lines are the unstru
tured triangulations. In ea
h 
ase the larger grid size is indi
ated bythe pla
ement of a symbol (\o" or \�"). Top Right: Conve
tion-dominated 
ase, � = 0:0001, stru
-tured grid. The solid line is the smaller N , the larger N is indi
ated by the dashed line. Bottom:Conve
tion-dominated 
ase, � = 0:0001, unstru
tured grid. The solid line is the smaller N , thelarger N is indi
ated by the dashed line.
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retization produ
ed and failed in the setup phase.Often in multigrid appli
ations, problems in 
onvergen
e indi
ate problems with thedis
retization, as is the 
ase here. Note that for unstru
tured grids where 
ow 
annotalign with (or against) the grid, 
onvergen
e is generally more uniform. An interestingpoint is that, in many 
ases, a smaller di�usion 
oeÆ
ient redu
es the 
onvergen
efa
tor. This is parti
ularly striking with the unstru
tured meshes. Finally, note thatthere is generally not mu
h di�eren
e between results for � and for � + �, so thereis no bene�t from a

idental alignment of relaxation with the 
ow dire
tion, and,
onversely, there is no slowing of 
onvergen
e due to upstream relaxation. This isdue to the C/F ordering of relaxation. These tests show that AMG 
an be appliedto nonsymmetri
 problems. While the 
onvergen
e fa
tors in this test are generallyless than 0:2{0:25, whi
h is 
ertainly a

eptable, some 
on
ern may be raised aboutthe s
alability issue, sin
e the 
onvergen
e fa
tors for the larger unstru
tured meshare noti
eably greater than those for the smaller unstru
tured grids. It remains to bedetermined if the 
onvergen
e fa
tors 
ontinue to grow with in
reasing problem size,or if they rea
h an asymptoti
 limit.5. AMG for Systems of Equations. The extension of AMG to \systems"problems, where more than one fun
tion is being approximated, is not straightforward.Many di�erent approa
hes 
an be formulated. Consider a problem with two unknownfun
tions of the form � A BC D � � uv � = � fg � :(8)The s
alar algorithm 
ould work in spe
ial 
ir
umstan
es (for example, if B and C arerelatively small in some sense), but, generally, the s
alar ideas of smoothness breakdown. One approa
h would be to iterate in a blo
k fashion on the two equations,with two separate appli
ations of AMG, one using A as the matrix (solving for u,holding v �xed) and one using B (solving for v, holding u �xed), and repeating until
onvergen
e. This is often very slow. An alternative is to use this blo
k iteration asa pre
onditioner in an outer 
onjugate gradient solution pro
ess.Another fairly simple alternative is to 
ouple the blo
k iteration pro
ess on alllevels, that is, to 
oarsen separately for ea
h fun
tion, obtaining two interpolationoperators Iu and Iv, then de�ne a full interpolation operator of the formI = � Iu 00 Iv � :(9)The Galerkin approa
h 
an then be used to 
onstru
t the 
oarse grid operator,� ITuAIu ITuBIvITv CIu ITvDIv � :(10)On
e the setup pro
ess is 
ompleted, multigrid 
y
les are performed as usual. We will
all this the fun
tion approa
h sin
e it treats ea
h fun
tion separately in determining
oarsening and interpolation. When u and v are de�ned on the same grid, it isalso possible to 
ouple the 
oarse-grid 
hoi
es for both, allowing for nodal relaxation,where both unknowns are updated simultaneously at a point. Following are resultsfor the fun
tion approa
h applied to several problems in 2D and 3D elasti
ity.
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ity:uxx + 1� �2 uyy + 1 + �2 vxy = f1;1 + �2 uxy + 1� �2 vxx + vyy = f2;where u and v are displa
ements in the x and y dire
tions, respe
tively. This 
anbe a diÆ
ult problem for standard multigrid methods, espe
ially when the domain islong and thin. The problem is dis
retized on a re
tangular grid using bilinear �niteelements, and several di�erent problem sizes and domain 
on�gurations are used.Problem 20 This problem is 3D elasti
ity:uxx + 1� �2 (uyy + uzz) + 1 + �2 (vxy + wxz) = f1;vyy + 1� �2 (vxx + vzz) + 1 + �2 (uxy + wyz) = f2;wzz + 1� �2 (wxx + wyy) + 1 + �2 (uxz + vyz) = f3;where u, v, and w are displa
ements in the three 
oordinate dire
tions. The problemis dis
retized on a 3D re
tangular grid using trilinear �nite elements. Several di�erentproblem sizes and domain 
on�gurations are used.In all tests, we take � = 0:3. The fun
tion approa
h with (1,1) V -
y
les is used inall tests. Results for Problem 19 are 
ontained in Table 7, and for Problem 20 in Table8. Note that 
omplexities are stable in 2D, with some dependen
e on problem sizein 3D. Convergen
e depends fairly heavily on the number of �xed boundaries in both2D and 3D, with 
onvergen
e degrading as the number of free boundaries in
reases.Table 7. Results for 2D elasti
ity, Problem 19# of �xed Convergen
e Operatorh n boundaries fa
tor 
omplexity1/32 1056 1 0.398 2.001/32 1023 2 0.253 1.911/32 961 4 0.202 1.851/64 4160 1 0.657 1.951/64 4095 2 0.292 1.911/64 3969 4 0.204 1.92Table 8. Results for 3D elasti
ity, Problem 20# of �xed Convergen
e Operatorh n boundaries fa
tor 
omplexity1/8 648 1 0.631 2.291/8 567 2 0.309 2.431/8 441 4 0.124 2.111/8 343 6 0.052 2.201/12 1859 2 0.326 2.761/12 1573 4 0.137 2.561/12 1331 6 0.084 2.94
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asionally, we en
ounter situationswhere 
onvergen
e of AMG is poor, yet no spe
i�
 reason is apparent. Our experien
eleads us to believe that the fundamental problem, in many 
ases, stems from thelimitation of the matrix entry ajk to re
e
t the true "smoothness" between ej andek. Often the true in
uen
es between variables are not 
lear. One 
ase where thislimitation is quite evident is where �nite elements with extreme aspe
t ratios areused, espe
ially in 
ases of extreme grid anisotropy or of thin-body elasti
ity. As asimple example, 
onsider the 2D nine-point negative Lapla
ian based on quadrilateralelements that are stret
hed in the x-dire
tion. The sten
il 
hanges as follows:18 24 �1 �1 �1�1 8 �1�1 �1 �1 35 =) 18 24 �1 �4 �12 8 2�1 �4 �1 35 ; as �x�y �!1:(11)The limiting 
ase is no longer an M -matrix. Indeed, even moderate aspe
t ratios(e.g., �x = 10�y) have o�-diagonal entries of both signs. It is not immediately 
learhow the neighbors to the east and west of the 
entral point should be treated. Dothey in
uen
e the 
entral point? Should they be in Si? Even if they are not treatedas in
uen
es, similar questions arise about how the 
orner points relate to the 
entralpoint. Geometri
 intuition indi
ates they are de
oupled from the 
enter, and shouldnot be treated as in
uen
es. Yet, for the most 
ommon 
hoi
e of � in (5), AMG treatsthem as in
uen
es. Another diÆ
ulty arises when two F points i and j in
uen
e ea
hother. Then ej must be approximated in the se
ond sum on the right side of (6) todetermine the weights for i, while ei must be approximated, in (6) but with the rolesof i and j reversed, to determine the weights for j. However, sin
e both ei and ej areto be interpolated (being F -point values), it makes sense to use the interpolations toobtain these approximations, that is, the approximations for ei and ej in (6) shouldbe ej � Xk2Ci wjkekXk2Ci wjk and ei � Xk2Cj wikekXk2Cj wik ;(12)respe
tively. Note that the approximations for any points in C are un
hanged in theseequations.This gives an impli
it system for the interpolation weights, whi
h is solved byan iterative s
heme with the initial approximation wij = aij . The new interpolationweights are then 
al
ulated in a Gauss-Seidel-like manner, using the most re
ently
omputed weights to make the approximations in (12). Two sweeps are generallysuÆ
ient. An important addition to the pro
ess is that, after the �rst sweep, theinterpolation sets are modi�ed by removing from Ci any point for whi
h a negativeinterpolation weight is 
omputed. The se
ond sweep is then used to 
ompute the �nalinterpolation weights.We present results of two experiments illustrating the e�e
tiveness, on 
ertaintypes of problems, of using this iterative weight de�nition s
heme. Other examplesmay be found in [24℄.Problem 21 This operator is the \stret
hed quadrilateral" Lapla
ian mentionedabove, dis
retized on an N = n � n grid, for N = 400; 900; 1225, and 10000. The
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hing fa
tor " represents the ratio of the x-dimension to the y-dimension of thequadrilateral. Values used are " = 10; 25; 50, and 100. In ea
h 
ase, the 
onvergen
efa
tor is 
omputed for the 
hoi
es � = 0:25 and � = 0:5. In the latter 
ase, the 
ornerpoints are not treated as in
uen
es, and AMG sele
ts a semi-
oarsened 
oarse grid,whi
h is the method geometri
 multigrid would take.Table 9. Results for problem 21, �x = "�yConvergen
e Fa
torstandard weights iterative weights" N � = 0:25 � = 0:5 � = 0:25 � = 0:510 900 0.45 0.23 0.13 0.1310 10000 0.47 0.24 0.14 0.1425 400 0.14 0.14 0.14 0.1450 1225 0.25 0.14 0.15 0.14100 900 0.83 0.53 0.82 0.23100 10000 0.93 0.55 0.93 0.28Results are displayed in Table 9. On the smallest problem, iterative weights haveno e�e
t. However, the 
onvergen
e rate on that problem is quite good, even forstandard weights. For moderate stret
hing (" < 100), the e�e
t of iterative weightingis to 
orre
t for misidenti�ed in
uen
e (i.e., improvement for � = 0:25) and to improvethe results even for 
orre
tly identi�ed in
uen
e (� = 0:5). For extreme stret
hing,only the latter e�e
t applies.Problem 22 Here we use the unstru
tured 3D di�usion operator from Problem 17,whose grid is displayed in Figure 5. Problem sizes are N = 500; 4000, and 8000. Theproblem in
ludes a very large jump dis
ontinuity, O(1026), in the di�usion 
oeÆ
ients.Table 10. Results for problem 22Convergen
e Fa
torstandard weights iterative weightsN � = 0:25 � = 0:5 � = 0:25 � = 0:5500 0.24 0.16 0.24 0.114000 0.71 0.42 0.17 0.178000 0.69 0.46 0.17 0.26Results are displayed in Table 10. Again we see that, on the smallest problem, iterativeweights have no e�e
t, but that 
onvergen
e there is fairly good anyway, even forstandard weights. On the two larger problems, iterative weights produ
e signi�
antimprovement for both 
hoi
es of �. Apparently, iterative weighting is 
ountering thee�e
ts of both poor element aspe
t ratios near the boundaries and jump dis
ontinuitiesin identifying in
uen
es among variables.On these problems, and similar problems 
hara
terized by 
oeÆ
ient dis
ontinu-ities and/or extreme aspe
t ratios in the elements, iterative weight de�nition provesto be quite e�e
tive. However, iterative weighting is not always e�e
tive at improv-ing slow AMG 
onvergen
e, and in a few 
ases it 
an a
tually 
ause very minordegradation in performan
e [24℄. We study a new approa
h in [13℄, 
alled elementinterpolation (AMGe), whi
h has the promise of over
oming the diÆ
ulties asso
iatedwith poor aspe
t ratios, misidenti�ed in
uen
es, and thin-body elasti
ity, providedthe individual element sti�ness matri
es are available.
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lusions. The need for fast solvers for many types of problems, espe
iallythose dis
retized on unstru
tured meshes, is a 
lear indi
ation that there is a marketfor software with the 
apabilities that AMG o�ers. Our study here demonstrates therobustness of AMG as a solver over a wide range of problems. Our tests indi
atethat it 
an be further extended, and that robust, eÆ
ient 
odes 
an be developedfor problems that are very diÆ
ult to solve by other te
hniques. AMG is also shownto have good s
alability on model problems. This s
alability does tend to degradesomewhat with in
reasing problem 
omplexity, but the 
onvergen
e fa
tors remaintra
table even in the worst of these situations.REFERENCES[1℄ R. E. Al
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