
ROBUSTNESS AND SCALABILITY OF ALGEBRAIC MULTIGRIDANDREW J. CLEARY� , ROBERT D. FALGOUT� , VAN EMDEN HENSON� , JIM E.JONES�, THOMAS A. MANTEUFFELy , STEPHEN F. MCCORMICKy, GERALD N.MIRANDAz AND JOHN W. RUGExAbstrat. Algebrai multigrid (AMG) is urrently undergoing a resurgene in popularity, due inpart to the dramati inrease in the need to solve physial problems posed on very large, unstruturedgrids. While AMG has proved its usefulness on various problem types, it is not ommonly understoodhow wide a range of appliability the method has. In this study, we demonstrate that range ofappliability, while desribing some of the reent advanes in AMG tehnology. Moreover, in light ofthe imperatives of modern omputer environments, we also examine AMG in terms of algorithmisalability. Finally, we show some of the situations in whih standard AMG does not work well, andindiate the urrent diretions taken by AMG researhers to alleviate these diÆulties.Key words. algebrai multigrid, interpolation, unstrutured meshes, salability1. Introdution. Algebrai multigrid (AMG) was �rst introdued in the early1980's [11, 8, 10, 12℄, and immediately attrated substantial interest [32, 28, 30, 29℄.Researh ontinued at a modest pae into the late 1980's and early 1990's [18, 14, 21,25, 20, 26, 22℄. Reently, however, there has been a major resurgene of interest in the�eld, for \lassial" AMG as de�ned in [29℄, as well as for a host of other algebrai-type multilevel methods [3, 16, 34, 6, 2, 4, 5, 15, 33, 17, 35, 36, 37℄. Largely, thisresurgene in AMG researh is due to the need to solve inreasingly larger systems,with hundreds of millions or billions of unknowns, on unstrutured grids. The sizeof these problems ditates the use of large-sale parallel proessing, whih in turndemands algorithms that sale well as problem size inreases. Two di�erent types ofsalability are important. Implementation salability requires that a single iterationbe salable on a parallel omputer. Less ommonly disussed is algorithmi salability,whih requires that the omputational work per iteration be a linear funtion of theproblem size and that the onvergene fator per iteration be bounded below 1 withbound independent of problem size. This type of salability is a property of thealgorithm, independent of parallelism, but is a neessary ondition before a salableimplementation an be attained.Multigrid methods are well known to be salable (both types) for ellipti prob-lems on regular grids. However, many modern problems involve extremely omplexgeometries, making strutured geometri grids extremely diÆult, if not impossible,to use. Appliation ode designers are turning in inreasing numbers to very largeunstrutured grids, and AMG is seen by many as one of the most promising methodsfor solving the large-sale problems that arise in this ontext.This study has four omponents. First, we examine the performane of \lassial"AMG on a variety of problems having regular struture, with the intent of determiningits robustness. Seond, we examine the performane of AMG on the same suite ofproblems, but now with unstrutured grids and/or irregular domains. Third, westudy the algorithmi salability of AMG by examining its performane on several of� Center for Applied Sienti� Computing (CASC), Lawrene Livermore National Laboratory,Livermore, CA. Email:fleary, rfalgout, vhenson, jjonesg�llnl.govy Department of Applied Mathematis, University of Colorado, Boulder, CO. Email: ftmanteuf,stevemg�boulder.olorado.eduz USS Florida (SSBN-728), Naval Submarine Base, Silverdale, WA, Email: JerryTrish�aol.omx Front Range Sienti�, Boulder, CO. Email: jruge�sobolev.Colorado.EDU1



Algebrai Multigrid 2the problems using grids of inreasing sizes. Finally, we introdue a new method foromputing interpolation weights, and we show that in ertain troublesome ases itan signi�antly improve AMG performane.Our study di�ers from previous reports on the performane of AMG (e.g., [29, 30℄)primarily by our examination of algorithmi salability, our emphasis on unstruturedgrids, and the introdution of a new algorithm for omputing interpolation weights.In Setion 2, a desription of some details of the AMG algorithm is given to providean understanding of the results and later disussion. In Setion 3, we present resultsof AMG applied to a range of symmetri salar problems, using �nite element dis-retizations on strutured and unstrutured 2D and 3D meshes. AMG is also testedon nonsymmetri problems, on both strutured and unstrutured meshes, and the re-sults are presented in Setion 4. A version of AMG designed for systems of equationsis tested, with the fous on problems in elastiity. Results are disussed in Setion5. In Setion 6, we introdue and report on tests of a new method for omputinginterpolation weights. We onluding with some remarks in Setion 7.2. The Salar AMG Algorithm. We begin by outlining the basi priniplesand tehniques that omprise AMG. Detailed explanations may be found in [29℄.Consider a problem of the form Au = f ;(1)where A is an n � n matrix with entries aij . For onveniene, the indies are iden-ti�ed with grid points, so that ui denotes the value of u at point i, and the grid isdenoted by 
 = f1; 2; : : : ; ng. In any multigrid method, the entral idea is that errore not eliminated by relaxation must be removed by oarse-grid orretion. Applied toellipti problems, for example, simple relaxations (Jaobi, Gauss-Seidel) redue highfrequeny error omponents eÆiently, but are very slow at removing smooth ompo-nents. However, the smooth error that remains after relaxation an be approximatedaurately on a oarser grid. This is done by solving the residual equation Ae = ron a oarser grid, then interpolating the error bak to the �ne grid and using it toorret the �ne-grid approximation. The oarse-grid problem itself is solved by a re-ursive appliation of this method. One iteration of this proess, proeeding throughall levels, is known as a multigrid yle. In geometri multigrid, standard uniformoarsening and linear interpolation are often used, so the main design task is to hoosea relaxation sheme that redues errors the oarsening proess annot approximate.One purpose of AMG is to free the solver from dependene on geometry, so AMGinstead �xes relaxation (normally Gauss-Seidel), and its main task is to determine aoarsening proess that approximates error that this relaxation annot redue.An underlying assumption in AMG is that smooth error is haraterized by smallresiduals, that is, Ae � 0, whih is the basis for hoosing oarse grids and de�ninginterpolation weights. For simpliity of disussion here, we assume that A is a sym-metri positive-de�nite M -matrix, with aii > 0; aij � 0 for j 6= i, and Paij � 0.This assumption is made for onveniene; AMG will frequently work well on matriesthat are not M -matries. To de�ne any multigrid method, several omponents arerequired. Using supersripts to indiate level number, where 1 denotes the �nest levelso that A1 = A and 
1 = 
, the omponents that AMG needs are as follows:1. \Grids" 
1 � 
2 � : : : � 
M .2. Grid operators A1; A2; : : : ; AM .3. Grid transfer operators:Interpolation Ikk+1; k = 1; 2; : : :M � 1,



Algebrai Multigrid 3Restrition Ik+1k ; k = 1; 2; : : :M � 1.4. Relaxation sheme for eah level.One these omponents are de�ned, the reursively de�ned yle is as follows:Algorithm: MV k(uk; fk). The (�1; �2) V-yle.If k =M , set uM = (AM )�1fM .Otherwise:Relax �1 times on Akuk = fk .Perform oarse grid orretion:Set uk+1 = 0; fk+1 = Ik+1k (fk �Akuk).\Solve" on level k+1withMV k+1(uk+1; fk+1).Corret the solution by uk  uk+Ikk+1uk+1.Relax �2 times on Akuk = fk.For this yle to work eÆiently, relaxation and oarse-grid orretion must worktogether to e�etively redue all error omponents. This gives two priniples thatguide the hoie of the omponents:P1: Error omponents not eÆiently redued by relaxation must bewell approximated by the range of interpolation.P2: The oarse-grid problem must provide a good approximation to�ne-grid error in the range of interpolation.Eah of these a�ets a di�erent set of omponents: given a relaxation sheme,P1 determines the oarse grids and interpolation, while P2 a�ets restrition andthe oarse grid operators. In order to satisfy P1, AMG takes an algebrai approah:relaxation is �xed, and the oarse grid and interpolation are automatially hosen sothat the range of the interpolation operator aurately approximates slowly dimin-ishing error omponents (whih may not always appear to be \smooth" in the usualsense). P2 is satis�ed by de�ning restrition and the oarse-grid operator by theGalerkin formulation:Ik+1k = �Ikk+1�T and Ak+1 = Ik+1k AkIkk+1:(2)When A is symmetri positive de�nite, this ensures that the orretion from theexat solution of the oarse-grid problem is the best approximation in the range ofinterpolation [23℄, where \best" is meant in the A-norm: by jjvjjA � hAv;vi1=2 .The hoie of omponents in AMG is done in a separate preproessing step:AMG Setup Phase:1. Set k = 1.2. Partition 
k into disjoint sets Ck and F k.(a) Set 
k+1 = Ck .(b) De�ne interpolation Ikk+1.3. Set Ik+1k = �Ikk+1�T and Ak+1 = Ik+1k AkIkk+1.4. If 
k+1 is small enough, setM = k+1 and stop. Otherwise,set k = k + 1 and go to step 2.Step 2 is the ore of the AMG setup proess. Sine the fous is on oarsening apartiular level k, suh supersripts are omitted here and  and f are substituted fork + 1 and k where neessary to avoid onfusion. The goal of the setup phase is tohoose the set C of oarse-grid points and, for eah �ne-grid point i 2 F � 
 � C,small set Ci � C of interpolating points. Interpolation is then of the form:



Algebrai Multigrid 4�If u�i =8<: ui if i 2 C;Xj2Ci wijuj if i 2 F:(3) 2.1. De�ning Interpolation Weights. To de�ne the interpolation weightswij , reall that slow onvergene is equivalent to small residuals, Ae � 0. Thus,we fous on errors satisfying aiiei � �Xj 6=i aijej :(4)Now, for any aij that is relatively small, we ould substitute ei for ej in (4) andthis approximate relation would still hold. This motivates the de�nition of the setof dependenies of a point i, denoted by Si, whih onsists of the set of points j forwhih aij is large in some sense. Hene, i depends on suh j beause, to satisfy the ithequation, the value of ui is a�eted more by the value of uj than by other variables.The de�nition used in AMG isSi � �j 6= i : �aij � �maxk 6=i (�aik)� ;(5)with � typially set to be 0.25. We also de�ne the set STi � fj : i 2 Sjg, that is, theset of points j that depend on point i, and we say that STi is the set of inuenes ofpoint i. Note: our terminology here di�ers from the lassial use in [29℄, whih refersto i as being strongly onneted to or strongly dependent on j if j 2 Si and whih usesno spei� terminology for j 2 STi .A basi premise of AMG is that relaxation smoothes the error in the diretion ofinuene. Hene, we may selet Ci = Si \ C as the set of interpolation points for i,and adhere to the following riterion while hoosing C and F :P3: For eah i 2 F , eah j 2 Si is either in C or Sj \ Ci 6= ;.That is, if i is a �ne point, then the points inuening i must either be oarse pointsor must themselves depend on the oarse points used to interpolate ui. This allowsapproximations neessary to de�ne interpolation. For i 2 F , (4) an be rewritten as:aiiei � �Xk2Ci aikek �Xj2=Ci aijej :(6)AMG interpolation is de�ned by making the following approximation in (6):8j 2=Ci; ej � 8>>>>>><>>>>>>: ei if j 2 SiXk2Ci ajkekXk2Ci ajk otherwise.(7)Substituting this into (6) and solving for ei gives the desired interpolation weights forpoint i 2 F .



Algebrai Multigrid 52.2. Seleting the Coarse Grid. The oarse grid is hosen to satisfy the ri-terion above, while attempting to ontrol its size. We employ the two-stage proessdesribed in [29℄, modi�ed slightly to reet our modi�ed terminology. The grid is�rst \olored", providing a tentative C/F hoie. Essentially, a point with the largestnumber of inuenes (\inuene ount") is olored as a C point. The points depend-ing on this C point are olored as F points. Other points inuening these F pointsare more likely to be useful as C points, so their inuene ount is inreased. Theproess is repeated until all points are either C or F points.Details of the initial C=F hoie are as follows:Repeat until U = ;:Set C = ;; F = ;; U = 
k. Set �i = jSTi j (the number ofpoints depending on the point i).Pik an i 2 U with maximal �i. Set C = CTfig andU = U � fig.For all j 2 STi (points depending on fig) do:Set F = F Sfjg and U = U � fjg.For all k 2 Sj TU set �k = �k +1 (Inrement the� for points that inuene the new F -points).For all j 2 SiTU set �j = �j � 1Next, a seond pass is made, in whih some F points may be reolored as C pointsto ensure that P3 is satis�ed. In this pass, eah F -point i is examined. The oarseinterpolatory set Ci = SiSC is de�ned. Then, if i depends on another F -point, j,the points inuening j are sanned, to see if any of them are in Ci. If this is not thease then j is tentatively onverted into a C-point and added to Ci. The dependeniesof i are then examined anew. If all F -points depending on i now depend on a pointin Ci then j is permanently made a C-point and the algorithm proeeds to the nextF -point and repeats. If, however, the algorithm �nds another F -point dependent oni that is not dependent on a point in Ci then i itself is made into a C-point and jreturned to the pool of F -points. This proedure is followed to minimize the numberof F -points that are onverted into C-points.We make a brief omment about the omputational and storage osts of thesetup phase. Unlike geometri multigrid, these osts annot be predited preisely.Instead, omputational ost must be estimated based on the average \stenil size"over all grids, the average number of interpolation points per F -point, the ratio of thetotal number of gridpoints on all grids to the number of points on the �ne grid (gridomplexity), and the ratio of the number of nonzero entries in all matries to that ofthe �ne-grid matrix (operator omplexity). While a detailed analysis is beyond thesope of this work [29℄, a good rule of thumb is that the omputational e�ort for thesetup phase is typially equivalent to between four and ten V -yles.3. Results for Symmetri Problems. In this setion, results for AMG appliedto symmetri salar problems are presented. Initially, onstant-oeÆient di�usionproblems in 2D are tested as a baseline for omparison as we begin to introdueompliations, inluding unstrutured meshes, irregular domains, and anisotropi anddisontinuous oeÆients. Results for 3D problems follow. All problems are run usingthe same AMG solver with �xed parameters. On many problems, it is possible toimprove our results by tuning some of the input parameters (there are many), butthe purpose here is to show AMG's basi behavior and robustness over a range ofproblems.The primary indiator of the speed of the algorithm is the asymptoti onvergene



Algebrai Multigrid 6fator per yle. This is determined by applying 20 yles to the homogeneous prob-lem, starting with a random initial guess, then measuring the redution in the normof the residual from one yle to the next (we use the homogeneous problem to avoidontamination by mahine representation). Generally, this ratio starts out very smallfor the �rst few yles, then inreases to some asymptoti value after 5-10 yles,when the most slowly onverging omponents beome dominant. This asymptotivalue is also a good indiator of the atual error redution from one yle to the next.We use the 2-norm of the residual, although it is easy to show that the asymptotionvergene fator is just the spetral radius of the AMG V -yle iteration operator,and hene is independent of the hoie of norm.The times given are for the setup and a single (1,1) V -yle. Setup time is whatit takes to hoose the oarser grids, de�ne interpolation, and ompute the oarse gridmatries. Cyle time is for one yle, not the full solution time. Three mahines areused in this study. The majority of the smaller tests are performed on a Pentium166MHz PC, although some are performed on a Sun Spar Ultra 1. For the largerproblems that demonstrate salability, we use a DEC Alpha. For this reason, timingsshould be ompared only within individual problems. Additionally, timings for thesmallest problems an have a high relative error, so the larger tests should give abetter piture of performane. Grid omplexity is de�ned as Pnk=n1, where nk isthe number of grid points on level k. This gives an idea of how quikly the gridsare redued in size. For omparison, in standard multigrid, the number of points isredued by a fator of 4 in 2D and 8 in 3D, yielding grid omplexities of 4/3 and8/7, respetively. AMG tends to oarsen more slowly. Operator omplexity, whih isa better indiator of the work per yle, is de�ned as P rknk=r1n1, where rk is theaverage number of non-zero entries per row (or \stenil size") on level k. Thus, theoperator omplexity is the ratio of the total number of nonzero matrix entries on alllevels to those on the �nest level. Sine relaxation work is proportional to the numberof matrix entries, this gives a good idea of the total amount of work in relaxationrelative to relaxation work on the �nest grid, and also of the total storage neededrelative to that required for the �ne grid matrix. In geometri multigrid, the grid andoperator omplexities are equal, but in AMG, operator omplexity is usually highersine average stenil sizes tend to grow somewhat on oarser levels. Note that theonvergene fators and omplexities are entirely independent of the spei� mahineon whih a test is performed.In the tests reported here, the fous is on �nite element disretizations ofr � (Dru) = f with D = � d11(x; y) d12(x; y)d21(x; y) d22(x; y) � :Several di�erent meshes and di�usion oeÆients D are used.3.1. Regular domains, strutured and unstrutured grids. The �rst �veproblems are 2D Poisson equations, with d11 = d22 = 1:0 and d12 = d21 = 0:0.Di�erent domains and meshes are used to demonstrate the behavior of AMG withsimple equations.We begin with the simplest 2D model problem. The suess of AMG on theregular-grid Poisson problem is well-doumented [30, 28, 29℄, so our purpose here ismore to assess its salability.Problem 1 This is a simple 5-point Laplaian operator with homogeneous Dirihletboundary onditions on the unit square. The experiment is run for uniform meshes
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Fig. 1. Top Left: Convergene fators, as a funtion of number of mesh points, for Problem 1the uniform-mesh 5-point Laplaian. Top Right: Log-log plots of setup times (irles) and yle times(triangles) for the uniform-mesh 5-point Laplaian. The dotted line, for referene, shows perfetlylinear saling. Bottom: Operator (irles) and grid (triangle) omplexities for the uniform-mesh5-point Laplaian.with n�n interior grid points, yielding mesh sizes n2 = N = 289, 1089, 2500, 10000,90000, 250000, and 490000.Results for Problem 1 are displayed in Figure 1. The onvergene fator (per y-le) is very stable at approximately 0.04 for all problem sizes. Both the setup and yletime are very nearly linear in N (ompare with the dotted line depiting a perfetlylinear hypothetial data set). Here, setup time averages roughly the time of 6 yles.As noted before, the operator omplexities are higher than the orresponding gridomplexities, but both appear to be una�eted by problem size. These data indiatethat AMG (applied to the uniform-mesh Laplaian) is algorithmially salable: theomputational work is O(N) per yle and the onvergene fator is O(1) per yle.An important omponent of our study is to determine to what extent this algorithmisalability is retained as we inrease problem omplexity.



Algebrai Multigrid 8Problem 2 This is the same equation as Problem 1 (��u = f), but now disretizedon an unstrutured triangular mesh. These meshes are obtained from uniform trian-gulations by randomly hoosing 15-20% of the nodes and \ollapsing" them to neigh-boring nodes, then smoothing the resulting mesh. The resulting operators might berepresented by M -matries in some ases, but this is not generally the ase. We usemeshes with N = 248; 912; 3506; 13755, and 54518. A typial example is shown attop left in Figure 2.Results of the experiments are displayed in Figure 2. On the unstrutured meshes,onvergene fators tend to show some dependene on mesh size, growing to around0.35 on the �nest grid. It should be noted, however, that these grids tend to be lessstrutured than many found in pratie, and no are was taken to ensure a \good"mesh; the meshes may have di�ering harateristis (suh as aspet ratios), as there isa large degree of randomness in their onstrution. Complexities are also higher withthe unstrutured meshes, and the setup time inreases orrespondingly. The mainpoint here is that AMG an deal e�etively with unstrutured meshes without toomuh degradation in onvergene over the uniform ase.3.2. Irregular domains. We ontinue to use the Laplaian, but now with irreg-ular domains. Sine our emphasis here is the e�ets of this irregularity, we restrit ourtests to two representative mesh sizes that give just a snapshot of algorithm salability.Problem 3 The omputational domain is an unstrutured triangular disretizationof the torus 0:05 �px2 + y2 � 0:5. Two di�erent mesh sizes were used, resulting ingrids with N = 14700 and 58445. Dirihlet boundary onditions around the hole areimposed, with Neumann onditions on the outer boundary.Problem 4 The domain for this problem is shown in Figure 3. The boundary on-ditions are Neumann exept that a Dirihlet ondition is imposed around the smallhole on the right. The meshes are uniform, with h = 1=128 and 1=256, resulting inmeshes with N = 11419 and 44227, respetively. The domain does not easily admitmuh oarser meshes.Problem 5 The domain for this problem is shown on the bottom in Figure 3. Dirih-let onditions are imposed on the exterior boundary, and Neumann onditions are onthe interior boundaries. A triangular unstrutured mesh is used.Results for Problems 3{5 are given in Table 1. Among these problems, Problem 3has the simplest domain, but the least strutured mesh and the slowest onvergene.This indiates that domain on�guration generally has little e�et on AMG behavior,while the struture (and perhaps the quality) of the mesh is more important.Table 1. Results for Problems 3{5.Poisson problem on unstrutured meshes, irregular domainsConvergene Setup time Cyle time Grid OperatorProblem N fator/yle (se) (se) omplexity omplexity3 14700 0.232 2.530 0.370 1.840 3.1003 58445 0.276 10.710 1.450 1.820 3.1104 11419 0.134 0.990 0.160 1.690 2.2304 44227 0.162 3.840 0.660 1.680 2.2305 7971 0.122 1.370 0.170 1.720 2.5005 30320 0.108 4.720 0.550 1.710 2.460
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Fig. 2. Top Left: A typial unstrutured grid for Problem 2, obtained by randomly deleting15% of the nodes in a regular grid and smoothing the result. Top Right: Convergene fators, asa funtion of number of mesh points, for the unstrutured-mesh 5-point Laplaian. Bottom Left:Log-log plots of setup times (irles) and yle times (triangles) for the unstrutured-grid 5-pointLaplaian. The dotted line, for referene, shows perfetly linear saling. Bottom Right: Operator(irles) and grid (triangle) omplexities for the unstrutured-grid 5-point Laplaian.
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Fig. 3. Domain (Top Left) and typial grid (Top Right) for Problem 4. Note that the meshsize neessary to display the triangulation is too oarse to observe the Dirihlet hole. Finer meshesare used for the alulations. Bottom: Typial grid for Problem 5.



Algebrai Multigrid 113.3. Isotropi di�usion. The next problem set deals with isotropi di�usion:d11 = d22 = d(x; y) and d12 = d21 = 0. Disontinuous d(x; y) an ause problems formany solution methods, inluding standard multigrid methods, although it is possibleto get good results either by aligning the disontinuities along oarse grid lines, orby using operator-dependent interpolation [1℄. In AMG, nothing speial is required,sine it is based on operator-dependent interpolation. The problems are ategorizedaording to the di�usion oeÆient used. The unit square is disretized on fourmeshes: two strutured meshes with N = 16642 and 66049, and two unstruturedmeshes, with N = 13755 and 54518. The di�usion oeÆients are de�ned in terms ofa parameter, , allowed to be either 10 or 1000, as follows:Problem 6 d(x; y) = 1:0 + jx� yj.Problem 7 d(x; y) = � 1:0 x � 0:5 x > 0:5:Problem 8 d(x; y) = � 1:0 0:125 � max (jx� 0:5j; jy � 0:5j) � 0:25; otherwise:Problem 9 d(x; y) = � 1:0 0:125 �p(x� 0:5)2 + (y � 0:5)2 � 0:25; otherwise:Results for these problems are presented in Table 2, whih ontains observedonvergene fators and operator omplexities for the various ombinations of gridsize and type, di�usion oeÆient funtion, and disontinuity jump size. The overallresults are fairly preditable. Convergene fators are fairly uniform. On the stru-tured meshes, they tend to grow slightly with inreasing grid size. They are notieablylarger for unstrutured grids, and they appear to grow somewhat with inreasing gridsize. (As noted before, omparison among unstrutured grids of various sizes musttake into aount that their generation involves some randomness, so they may di�erin important ways.) The onvergene fator does not seem to depend signi�antlyon the size of the jump in the di�usion oeÆient. In many ases, results were bet-ter with  = 1000 than with  = 10. Indeed, AMG has been applied suessfullyto problems with muh larger jumps [28℄; see also Problem 17. Note that there areonly minor variations in operator omplexity for the di�erent problems and di�erentgrid sizes. The only signi�ant e�et on operator omplexity appears to be whetherthe grid is strutured or unstrutured, with the latter showing omplexity inreasesof about 30{40%. It should be noted, however, that even in these ases, the entireoperator hierarhy an be stored in just over three times the storage required for the�ne-grid alone.



Algebrai Multigrid 12Table 2. Results for Problems 6{9.Poisson problem, variable and disontinuous oeÆientsUniform mesh size Unstrutured mesh sizeProblem 16642 66049 13755 54518#  onv. mplxty onv. mplxty onv. mplxty onv. mplxty6 10 0.063 2.2 0.095 2.2 0.290 3.35 0.307 3.396 1000 0.097 2.21 0.180 2.2 0.264 3.32 0.369 3.367 10 0.111 2.25 0.126 2.23 0.266 3.29 0.287 3.387 1000 0.123 2.25 0.144 2.23 0.254 3.28 0.250 3.378 10 0.138 2.32 0.159 2.27 0.303 3.28 0.320 3.378 1000 0.220 2.30 0.188 2.26 0.286 3.32 0.336 3.389 10 0.165 2.33 0.179 2.28 0.280 3.32 0.311 3.389 1000 0.171 2.35 0.168 2.30 0.234 3.31 0.298 3.40Problems 10{13 are designed to examine the ase in whih the di�usion oeÆientis disontinuous and to determine whether the \sale" of the disontinuous regionsa�ets performane. Aordingly, Problems 10{12 use a \hekerboard" pattern:d(x; y) =8>><>>: 1 if i+ j is even and in � x < i+ 1n ; jn � y < j + 1n ; if i+ j is odd and in � x < i+ 1n ; jn � y < j + 1n ;where i; j = 0; 1; : : : ; n. Spei�ally,Problem 10 n = 2.Problem 11 n = 10.Problem 12 n = 50.For the last problem of this group, we haveProblem 13 d(x; y) = random(x; y).Results for Problems 10{13 are displayed in Table 3. The overall trend is similarto the results for Problems 6{9, showing onvergene fators that grow slightly withproblem size and that are notieably larger for unstrutured grids.Table 3. Results for Problems 10{13.Poisson problem, variable and disontinuous oeÆientsUniform mesh size Unstrutured mesh sizeProblem 16642 66049 13755 54518#  onv. mplxty onv. mplxty onv. mplxty onv. mplxty10 10 0.120 2.28 0.135 2.25 0.266 3.29 0.283 3.3710 1000 0.110 2.28 0.119 2.24 0.252 3.28 0.290 3.3711 10 0.225 2.74 0.275 2.56 0.295 3.25 0.328 3.3411 1000 0.230 2.76 0.274 2.57 0.263 3.21 0.321 3.3212 10 0.255 2.83 0.289 2.98 0.302 2.81 0.336 3.1112 1000 0.238 2.67 0.283 2.98 0.263 2.66 0.403 3.0113 10 0.199 2.86 0.290 2.94 0.272 3.23 0.324 3.3113 1000 0.255 2.97 0.287 3.04 0.288 3.04 0.319 3.12



Algebrai Multigrid 13The best results for the isotropi di�usion problems are obtained for Problem 6,where the oeÆient is ontinuous. The worst onvergene fator is obtained for the50 � 50 \hekerboard" pattern of Problem 12. Note that AMG performs well onProblem 8, where \smooth" funtions are approximately onstant in the enter of theregion, zero in the high-di�usion zone near the boundary, and smoothly varying in be-tween. Good interpolation in the low-di�usion band is essential to good onvergene.Overall, AMG appears to work quite well with disontinuous di�usion oeÆients,even when they vary randomly by a large fator from point to point, as in Problem13. 3.4. Anisotropi di�usion. The next series of problems deals with anisotropidi�usion, whih an arise in several ways. Anisotropy an be introdued by the meshbeing re�ned di�erently in eah diretions, perhaps to resolve a boundary layer orsome other loal phenomenon. Another ase is a tensor produt grid used in order tore�ne some area [x0; x1℄� [y0; y1℄ , with the mesh size small for x 2 [x0; x1℄ and for y 2[y0; y1℄, but large elsewhere. This maintains a logially retangular mesh, but ausesanisotropi disretizations in di�erent parts of the domain. This is relatively easy todeal with in geometri multigrid, where line relaxation and/or semi-oarsening anbe used [9℄. Non-aligned anisotropy, whih is more diÆult to handle with standardmultigrid, arises from the operator itself, suh as the ase of the full potential operatorin transoni ows. The performane of AMG on grid-indued (aligned) anisotropyhas been reported previously [29℄, so we instead fous here on non-aligned anisotropy.Both types of anisotropy an be written in terms of the di�usion equation using theoeÆient matrix:D(x; y) = � 1 00 1 �� (1� �) � os2 � � os � sin �� os � sin � sin2 � � :When � is onstant, this gives the operator ����+��� , where � is in the diretion �. Ona retangular grid with mesh sizes hx and hy, the usual Poisson equation orrespondsto the di�usion equation with � = 0 and � = h2y=h2x.Problem 14 This problem features a non-aligned anisotropi operator on the unitsquare, with Dirihlet boundary onditions at y = 0 and y = 1 and Neumann ondi-tions on the other two sides. The ases � = 0:1 and � = 0:001 were both examinedwith � = 0; �=6; �=5, and �=4. Eah suh ombination is disretized on a uniformsquare mesh (with bilinear elements) and both uniform and unstrutured triangularmeshes (with linear elements). The uniform meshes have N = 16642 and 66049, whilethe unstrutured meshes have N = 13755 and 54518.Convergene fators for Problem 14, as shown in Figure 4, generally degrade withinreasing �. This is to be expeted, as it indiates lessened alignment of anisotropywith the grid diretions. The strong anisotropy ase yields onvergene fators ashigh as 0.745. As noted above, the non-aligned ase is very diÆult, even for stan-dard multigrid, and is the subjet of ongoing study. One enouraging result is thatthe unstrutured grid formulations are relatively insensitive to grid anisotropy, withonvergene fators that hover between 0.3 and 0.5 in all ases exept � = 0. Overall,these results indiate that AMG is rather robust for anisotropi problems, althoughonvergene fators are somewhat higher than those typially obtained with AMG onisotropi problems.



Algebrai Multigrid 14Convergene fator vs. � Convergene fator vs. �� = 0:01 � = 0:001
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Fig. 4. Convergene fators, plotted as a funtion of anisotropy diretion �. Left: Moderateanisotropy, � = 0:01 Right: Strong anisotropy, � = 0:001. In eah plot, the solid lines are theuniform meshes with square disretizations, the dotted lines are uniform meshes with triangulardisretizations, and the dashed lines are the unstrutured triangulations. In eah ase, the largergrid size is indiated by a symbol (\o", \+", or \�").Problem 15 We use the operator of Problem 4, r � (Dru), but withD(x; y) = 1r2 � �x2 + y2 �xy�xy x2 + �y2 � ;r2 = x2 + y2, and � = 100. This yields a disretization suh that, on any irleentered at the origin, there are dependenies in the tangential diretion, but none inthe radial diretion.This problem is very diÆult to solve by onventional methods. Using the samemeshes as in Problem 14, AMG produed the onvergene fators given in Table 4.Table 4. Results for Problem 15: Cirular di�usion oeÆientuniform mesh (square) uniform mesh (triangular) unstrutured meshN = 16642 N = 66049 N = 16641 N = 66049 N = 13755 N = 545180.619 0.534 0.764 0.674 0.845 0.840The onvergene fators illustrate the diÆulty with this problem, whih annot behandled easily by geometri methods, even on regular meshes. A polar-oordinatemesh would allow blok relaxation over strongly oupled points, but would su�er fromthe diÆulties of polar-oordinate grids (e.g., singularity at the origin) and would beuseless for more general anisotropies. While onvergene of AMG here is muh slowerthan what we normally assoiate with multigrid methods, this example shows thatAMG an be useful even for extremely diÆult problems.3.5. 3D problems. Turning our attention to three dimensions, we do not expetspeial diÆulties here, sine AMG is based on the algebrai relationships betweenthe variables.



Algebrai Multigrid 15Problem 16 This is a 3D Poisson problem on the unit ube. Disretization is bytrilinear �nite elements on a retangular mesh. Dirihlet boundary onditions areimposed at y = 0 and y = 1, and Neumann onditions are imposed at the otherboundaries. Mesh line spaing and the number of mesh intervals were both variedto produe several grids with di�erent spaings and extents in the three oordinatediretions. The various ombinations of mesh sizes used, onvergene fators, andoperator omplexities are shown in Table 5.Table 5. Results for Problem 16.3D Poisson problem, regular retangular meshConvergene OperatorNx hx Ny hy Nz hz N fator/yle Complexity10 1/10 10 1/10 10 1/10 1089 0.050 4.1020 1/20 20 1/20 20 1/20 8379 0.064 5.2125 1/25 25 1/25 25 1/25 16224 0.068 5.2620 1/20 20 1/20 20 1/200 8379 0.315 1.7520 1/20 20 1/200 20 1/200 8379 0.151 1.2820 1/200 20 1/20 20 1/200 8379 0.171 1.3120 1/200 20 1/20 20 1/2000 8379 0.324 1.75Problem 17 This is a 3D unstrutured mesh problem, generated by a ode used atLawrene Livermore National Laboratory, for the di�usion problem r�(a(~x)ru(~x)) =g(~x). The domain is a segment of a sphere, from r = 0:02 to r = 0:1, � = 0 to �=2,and � = �=4 to �=2. The oeÆient a(~x) is a large onstant for r � 0:05 and a smallonstant for r > 0:05, with a step disontinuity of 1:0�1026. The boundaries r = 0:02and r = 0:01 are Dirihlet, while the boundaries � = �=4 and � = �=2 are surfaes ofsymmetry. Disretization is by �nite elements using hexahedral elements.Figure 5 shows the loations of the nodes at the element orners for one of the prob-lems. Three problem sizes are given, with N = 500, 4000, and 8000. Convergenefators and operator omplexities for these problems are given in Table 6.Table 6. Results for Problem 17.3D unstrutured di�usion problemConvergene OperatorN fator/yle omplexity500 0.070 1.994000 0.165 2.498000 0.166 2.84AMG apparently works quite well for 3D problems, inluding those with dison-tinuous oeÆients. The onvergene fators are good in all ases. Complexity variessigni�antly, with the highest values for the uniform grids, but dereasing markedlywith inreasing grid anisotropy. This may be taken as further evidene that AMGautomatially takes advantage of diretions of inuene.Overall, AMG performed well on this suite of symmetri salar test problems.Many of these problems are designed to be very diÆult, often unrealistially so,espeially those with the irular anisotropi di�usion pattern and the random di�u-sion oeÆients. Reall that the same AMG algorithm, with no parameter tuning,was used in all ases. There are a number of tools for inreasing the eÆieny ofAMG, espeially on symmetri problems, that have proved useful in many ases. One
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Fig. 5. Nodes at element orners, 3D di�usion problem. Top Left: View of all the nodeloations. Top Right: View from diretly overhead, showing radial lines of nodes in the azimuthaldiretion. Bottom: Distribution of nodes within a plane of onstant azimuth.



Algebrai Multigrid 17is the so-alled V ? yle [30℄, in whih the oarse-grid orretions are multiplied byan optimal parameter, determined by minimizing the A-norm of the orreted error.Another, whih has been suessful in applying AMG to Maxwell's equations [27℄, isto use an outer onjugate gradient iteration, with AMG yling as a preonditioner.Often, when AMG fails to perform well, the problem lies in a small number of om-ponents that are not redued eÆiently by relaxation or oarse-grid orretion, andonjugate gradients an be very eÆient in suh ases. Other methods for improvingeÆieny inlude the F�yle [7, 31℄ and the full multigrid (FMG) method, whoseappliability to AMG is the subjet for future researh.4. AMG applied to Nonsymmetri Salar Problems. Although muh ofthe motivation and theory for AMG is based on symmetry of the matrix, this is notat all a requirement for good onvergene behavior. Mildly nonsymmetri problemsbehave essentially like their symmetri ounterparts. Suh ases arise when a nonsym-metri disretization of a symmetri problem is used or when the original problem ispredominantly ellipti. An important requirement for urrent versions of AMG is thatpoint Gauss-Seidel relaxation onverge, however slowly. Thus, entral di�erening of�rst-order terms, when they dominate, annot be used beause of severe loss of diag-onal dominane. Even in these ases, suessful versions of AMG an be developedusing Kazmarz relaxation [9℄. Nevertheless, we restrit ourselves here to upstreamdi�erening so that we an retain our use of Gauss-Seidel relaxation.Problem 18 This is a onvetion-di�usion problem of the form��u+ os �ux + sin �uy = f;with Dirihlet boundary onditions. Triangular meshes are used, both strutured(N = 16642 and 66049) and unstrutured (N = 13755 and 54518). The di�usion termis disretized by �nite elements. The onvetion term is disretized using upstreamdi�erening, that is, the integral of the onvetion term is omputed over the triangleand added to the equation orresponding to the node with the largest oeÆient (thenode \most upstream"). Note that this an result in a matrix that has o�-diagonalentries of both signs. Two hoies for � are employed: � = 0:1 and � = 0:0001. Testsare onduted with � = k�=8 for k = 0; 1; : : : ; 15.Results are presented in Figure 6. The urves in the top left graph are for � = 0:1; thestrutured grid results are displayed with solid lines, and the unstrutured-grid resultsare displayed with dashed lines. For eah pair of urves, the urve with the marker (\o"or \�") indiates the mesh with larger N . The onvetion-dominated ase � = 0:0001is shown at the top right (strutured grids) and on the bottom (unstrutured grids).In eah ase, the smaller N is shown with solid lines and the larger N with dashedlines. Note that onvergene is generally good and fairly uniform, partiularly for theunstrutured ases. Results on the smaller uniform mesh are espeially good when theow is aligned with the diretions � = 0; �=4, or �=2. This is due to the triangulation:to obtain the uniform mesh, the domain is partitioned into squares, and then eahsquare is split into two triangles, with the diagonal going from the lower left to theupper right; the \good" diretions are aligned with the edges of the triangles. Thisalso has an e�et on the quality of the disretization, and on onvergene, when theow is in the diretion 3�=4 and 7�=4. Here, the disretization used for the onvetionterm auses a rather severe loss of positivity in the o�-diagonals. This is more thefault of the disretization than AMG. For � = 11�=8 with the smaller uniform mesh,
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Convergene fator vs. � Convergene fator vs. �� = 0:1 � = 0:0001, strutured grid
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Fig. 6. Convergene fators, plotted as a funtion of diretion, �, for the nonsymmetri prob-lem. Top Left: Weaker onvetion ase, � = 0:1 The solid lines are the uniform meshes, and thedashed lines are the unstrutured triangulations. In eah ase the larger grid size is indiated bythe plaement of a symbol (\o" or \�"). Top Right: Convetion-dominated ase, � = 0:0001, stru-tured grid. The solid line is the smaller N , the larger N is indiated by the dashed line. Bottom:Convetion-dominated ase, � = 0:0001, unstrutured grid. The solid line is the smaller N , thelarger N is indiated by the dashed line.



Algebrai Multigrid 19AMG was unable to handle the disretization produed and failed in the setup phase.Often in multigrid appliations, problems in onvergene indiate problems with thedisretization, as is the ase here. Note that for unstrutured grids where ow annotalign with (or against) the grid, onvergene is generally more uniform. An interestingpoint is that, in many ases, a smaller di�usion oeÆient redues the onvergenefator. This is partiularly striking with the unstrutured meshes. Finally, note thatthere is generally not muh di�erene between results for � and for � + �, so thereis no bene�t from aidental alignment of relaxation with the ow diretion, and,onversely, there is no slowing of onvergene due to upstream relaxation. This isdue to the C/F ordering of relaxation. These tests show that AMG an be appliedto nonsymmetri problems. While the onvergene fators in this test are generallyless than 0:2{0:25, whih is ertainly aeptable, some onern may be raised aboutthe salability issue, sine the onvergene fators for the larger unstrutured meshare notieably greater than those for the smaller unstrutured grids. It remains to bedetermined if the onvergene fators ontinue to grow with inreasing problem size,or if they reah an asymptoti limit.5. AMG for Systems of Equations. The extension of AMG to \systems"problems, where more than one funtion is being approximated, is not straightforward.Many di�erent approahes an be formulated. Consider a problem with two unknownfuntions of the form � A BC D � � uv � = � fg � :(8)The salar algorithm ould work in speial irumstanes (for example, if B and C arerelatively small in some sense), but, generally, the salar ideas of smoothness breakdown. One approah would be to iterate in a blok fashion on the two equations,with two separate appliations of AMG, one using A as the matrix (solving for u,holding v �xed) and one using B (solving for v, holding u �xed), and repeating untilonvergene. This is often very slow. An alternative is to use this blok iteration asa preonditioner in an outer onjugate gradient solution proess.Another fairly simple alternative is to ouple the blok iteration proess on alllevels, that is, to oarsen separately for eah funtion, obtaining two interpolationoperators Iu and Iv, then de�ne a full interpolation operator of the formI = � Iu 00 Iv � :(9)The Galerkin approah an then be used to onstrut the oarse grid operator,� ITuAIu ITuBIvITv CIu ITvDIv � :(10)One the setup proess is ompleted, multigrid yles are performed as usual. We willall this the funtion approah sine it treats eah funtion separately in determiningoarsening and interpolation. When u and v are de�ned on the same grid, it isalso possible to ouple the oarse-grid hoies for both, allowing for nodal relaxation,where both unknowns are updated simultaneously at a point. Following are resultsfor the funtion approah applied to several problems in 2D and 3D elastiity.



Algebrai Multigrid 20Problem 19 This problem is plane-stress elastiity:uxx + 1� �2 uyy + 1 + �2 vxy = f1;1 + �2 uxy + 1� �2 vxx + vyy = f2;where u and v are displaements in the x and y diretions, respetively. This anbe a diÆult problem for standard multigrid methods, espeially when the domain islong and thin. The problem is disretized on a retangular grid using bilinear �niteelements, and several di�erent problem sizes and domain on�gurations are used.Problem 20 This problem is 3D elastiity:uxx + 1� �2 (uyy + uzz) + 1 + �2 (vxy + wxz) = f1;vyy + 1� �2 (vxx + vzz) + 1 + �2 (uxy + wyz) = f2;wzz + 1� �2 (wxx + wyy) + 1 + �2 (uxz + vyz) = f3;where u, v, and w are displaements in the three oordinate diretions. The problemis disretized on a 3D retangular grid using trilinear �nite elements. Several di�erentproblem sizes and domain on�gurations are used.In all tests, we take � = 0:3. The funtion approah with (1,1) V -yles is used inall tests. Results for Problem 19 are ontained in Table 7, and for Problem 20 in Table8. Note that omplexities are stable in 2D, with some dependene on problem sizein 3D. Convergene depends fairly heavily on the number of �xed boundaries in both2D and 3D, with onvergene degrading as the number of free boundaries inreases.Table 7. Results for 2D elastiity, Problem 19# of �xed Convergene Operatorh n boundaries fator omplexity1/32 1056 1 0.398 2.001/32 1023 2 0.253 1.911/32 961 4 0.202 1.851/64 4160 1 0.657 1.951/64 4095 2 0.292 1.911/64 3969 4 0.204 1.92Table 8. Results for 3D elastiity, Problem 20# of �xed Convergene Operatorh n boundaries fator omplexity1/8 648 1 0.631 2.291/8 567 2 0.309 2.431/8 441 4 0.124 2.111/8 343 6 0.052 2.201/12 1859 2 0.326 2.761/12 1573 4 0.137 2.561/12 1331 6 0.084 2.94



Algebrai Multigrid 216. Iterative Interpolation Weights. Oasionally, we enounter situationswhere onvergene of AMG is poor, yet no spei� reason is apparent. Our experieneleads us to believe that the fundamental problem, in many ases, stems from thelimitation of the matrix entry ajk to reet the true "smoothness" between ej andek. Often the true inuenes between variables are not lear. One ase where thislimitation is quite evident is where �nite elements with extreme aspet ratios areused, espeially in ases of extreme grid anisotropy or of thin-body elastiity. As asimple example, onsider the 2D nine-point negative Laplaian based on quadrilateralelements that are strethed in the x-diretion. The stenil hanges as follows:18 24 �1 �1 �1�1 8 �1�1 �1 �1 35 =) 18 24 �1 �4 �12 8 2�1 �4 �1 35 ; as �x�y �!1:(11)The limiting ase is no longer an M -matrix. Indeed, even moderate aspet ratios(e.g., �x = 10�y) have o�-diagonal entries of both signs. It is not immediately learhow the neighbors to the east and west of the entral point should be treated. Dothey inuene the entral point? Should they be in Si? Even if they are not treatedas inuenes, similar questions arise about how the orner points relate to the entralpoint. Geometri intuition indiates they are deoupled from the enter, and shouldnot be treated as inuenes. Yet, for the most ommon hoie of � in (5), AMG treatsthem as inuenes. Another diÆulty arises when two F points i and j inuene eahother. Then ej must be approximated in the seond sum on the right side of (6) todetermine the weights for i, while ei must be approximated, in (6) but with the rolesof i and j reversed, to determine the weights for j. However, sine both ei and ej areto be interpolated (being F -point values), it makes sense to use the interpolations toobtain these approximations, that is, the approximations for ei and ej in (6) shouldbe ej � Xk2Ci wjkekXk2Ci wjk and ei � Xk2Cj wikekXk2Cj wik ;(12)respetively. Note that the approximations for any points in C are unhanged in theseequations.This gives an impliit system for the interpolation weights, whih is solved byan iterative sheme with the initial approximation wij = aij . The new interpolationweights are then alulated in a Gauss-Seidel-like manner, using the most reentlyomputed weights to make the approximations in (12). Two sweeps are generallysuÆient. An important addition to the proess is that, after the �rst sweep, theinterpolation sets are modi�ed by removing from Ci any point for whih a negativeinterpolation weight is omputed. The seond sweep is then used to ompute the �nalinterpolation weights.We present results of two experiments illustrating the e�etiveness, on ertaintypes of problems, of using this iterative weight de�nition sheme. Other examplesmay be found in [24℄.Problem 21 This operator is the \strethed quadrilateral" Laplaian mentionedabove, disretized on an N = n � n grid, for N = 400; 900; 1225, and 10000. The



Algebrai Multigrid 22strething fator " represents the ratio of the x-dimension to the y-dimension of thequadrilateral. Values used are " = 10; 25; 50, and 100. In eah ase, the onvergenefator is omputed for the hoies � = 0:25 and � = 0:5. In the latter ase, the ornerpoints are not treated as inuenes, and AMG selets a semi-oarsened oarse grid,whih is the method geometri multigrid would take.Table 9. Results for problem 21, �x = "�yConvergene Fatorstandard weights iterative weights" N � = 0:25 � = 0:5 � = 0:25 � = 0:510 900 0.45 0.23 0.13 0.1310 10000 0.47 0.24 0.14 0.1425 400 0.14 0.14 0.14 0.1450 1225 0.25 0.14 0.15 0.14100 900 0.83 0.53 0.82 0.23100 10000 0.93 0.55 0.93 0.28Results are displayed in Table 9. On the smallest problem, iterative weights haveno e�et. However, the onvergene rate on that problem is quite good, even forstandard weights. For moderate strething (" < 100), the e�et of iterative weightingis to orret for misidenti�ed inuene (i.e., improvement for � = 0:25) and to improvethe results even for orretly identi�ed inuene (� = 0:5). For extreme strething,only the latter e�et applies.Problem 22 Here we use the unstrutured 3D di�usion operator from Problem 17,whose grid is displayed in Figure 5. Problem sizes are N = 500; 4000, and 8000. Theproblem inludes a very large jump disontinuity, O(1026), in the di�usion oeÆients.Table 10. Results for problem 22Convergene Fatorstandard weights iterative weightsN � = 0:25 � = 0:5 � = 0:25 � = 0:5500 0.24 0.16 0.24 0.114000 0.71 0.42 0.17 0.178000 0.69 0.46 0.17 0.26Results are displayed in Table 10. Again we see that, on the smallest problem, iterativeweights have no e�et, but that onvergene there is fairly good anyway, even forstandard weights. On the two larger problems, iterative weights produe signi�antimprovement for both hoies of �. Apparently, iterative weighting is ountering thee�ets of both poor element aspet ratios near the boundaries and jump disontinuitiesin identifying inuenes among variables.On these problems, and similar problems haraterized by oeÆient disontinu-ities and/or extreme aspet ratios in the elements, iterative weight de�nition provesto be quite e�etive. However, iterative weighting is not always e�etive at improv-ing slow AMG onvergene, and in a few ases it an atually ause very minordegradation in performane [24℄. We study a new approah in [13℄, alled elementinterpolation (AMGe), whih has the promise of overoming the diÆulties assoiatedwith poor aspet ratios, misidenti�ed inuenes, and thin-body elastiity, providedthe individual element sti�ness matries are available.
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