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Abstract. Efficient numerical simulation of physical processes is constrained by our ability to
solve the resulting linear systems, prompting substantial research into the development of multi-
scale iterative methods capable of solving these linear systems with an optimal amount of effort.
Overcoming the limitations of geometric multigrid methods to simple geometries and differential
equations, algebraic multigrid methods construct the multigrid hierarchy based only on the given
matrix. While this allows for efficient black-box solution of the linear systems associated with
discretizations of many elliptic differential equations, it also results in a lack of robustness due
to unsatisfied assumptions made on the near null spaces of these matrices. This paper introduces
an extension to algebraic multigrid methods that removes the need to make such assumptions by
utilizing an adaptive process. Emphasis is on the principles that guide the adaptivity and their
application to algebraic multigrid solution of certain symmetric positive-definite linear systems.

1. Introduction. While the original development of algebraic multigrid (AMG)
began over twenty years ago (cf. [8, 24]), the current level of interest and research
activity is fairly recent. This dramatic increase is largely due to the potential of these
methods for solving very large problems arising from partial differential equations
with irregular grids and varying coefficients. See, for example, [1, 3, 13, 28, 33].

By the term algebraic multigrid, we mean the class of solvers based on multigrid
principles that depend little or not at all on geometric information about the problem,
but instead attempt to use basic concepts of “algebraic smoothness” to determine
effective coarsening and/or relaxation processes. Solvers of this type typically assume
some defining characteristic of algebraic smoothness, specifying error components
that are not quickly eliminated by the relaxation that is being used. For example,
all such components are assumed, in standard AMG (cf. [27] and §2), to vary slowly
along so-called strong connections in the matrix, or, in smoothed aggregation (SA;
cf. [30]), to be represented locally by a few prototype vectors supplied by the user.
While appropriate use of the characteristic of algebraic smoothness seems essential for
obtaining effective solvers, these additional assumptions limit the scope of applicability
of such methods. In many important cases, errors missed by standard relaxation
processes can vary substantially along strong matrix connections, and, in many cases,
even the concept of strength of connection is not well understood. Moreover, supplying
a fully representative set of prototypical smooth components is not always easy nor
possible in practice.

The principal aim of the adaptive approach developed here is to eliminate, or
substantially reduce, this reliance on the additional assumptions usually present in
these methods. The basic idea is to test the initial version of the given solver on the
homogeneous problem, Ax = 0, to determine its performance and expose whatever
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types of errors it does not effectively reduce. The resulting prototypical errors that
these tests produce are then used to improve the algebraic multigrid process.

The concept of using a multigrid algorithm to improve itself is not new. Using
prototypical algebraically smooth vectors in the coarsening process was first developed
in the early stages of the AMG project of Brandt, McCormick, and Ruge (documented
in [24]), where interpolation was defined to fit vectors obtained by relaxation on
the homogeneous problem. In [8], a variation of this idea was used for recovering
typical AMG convergence rates for a badly scaled scalar elliptic problem. While
this initial approach was very basic and used only one prototype of algebraically
smooth error, it contained many of the ingredients of the adaptive process described
here. These concepts were developed further in [23, 25, 26, 27]. The concept of
fitting eigenvectors corresponding to the smallest eigenvalues was advocated in [23]
and [27], where an AMG algorithm determining these eigenvectors through Rayleigh
quotient minimization was outlined. These vectors were, in turn, used to update the
AMG interpolation and coarse-level operators. Adaptivity of linear solvers has a long
history, including adaptive choice of the overrelaxation parameter in SOR [18] or the
parameters in a Chebyshev iteration [21], and has seen renewed interest of late as a
way to improve robustness of existing linear solvers, as in the work of Brandt [7] and
Wagner and Wittum [31, 32].

In many ways, using algebraically smooth vectors in the definition of interpolation
represents the next logical step in improving the interpolation operators used in robust
geometric and algebraic multigrid methods. Alcouffe et al. introduced the concept
of operator-induced interpolation in [2]. This improvement on the previously used
geometric interpolation approach opened up a much larger class of problems to black-
box multigrid solution.

In the present paper, we use an operator-induced interpolation approach as well,
but also rely on an automatic process that supplies representative algebraically smooth
components to ensure optimal performance. By integrating information regarding
algebraically smooth vectors into the definition of interpolation, we develop multigrid
schemes that are hopefully optimal for elliptic problems where the discrete system is
not necessarily in the form of an M-matrix. These operator- and relaxation-induced
interpolation approaches can, if properly implemented, greatly enlarge the class of
problems that admits optimal performance by a black-box multigrid technique.

We also introduce this form of adaptivity into AMG. While classical multigrid
methods can be viewed as stationary iterative methods [4], the methods presented
here are dynamic in their setup phase. In fact, we propose using the method itself to
drive its own iterative improvement. A “bootstrap” AMG method that is similar to
the approach developed here was recently proposed for the classical AMG setting by
Brandt [7, 9].

Several other attempts have been made to allow for the solver itself to determine
from the discrete problem the information required to solve it successfully, with-
out a priori assumptions on the form of the smooth error, including the methods
of [10, 12, 14, 17]. All of these methods, however, have in common their requirement
that the local finite element matrices of the problem be available, and they construct
the multigrid transfer operators based on the algebraically smooth eigenvectors corre-
sponding to local stiffness matrices assembled over element agglomerates. Although
they can achieve encouraging convergence rates, their need to construct, store, and
manipulate the coarse-level element information typically leads to increased storage
requirements compared to those of classical AMG or standard SA. The methods de-
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scribed below attempt to achieve the good convergence properties of the element-based
methods without requiring access to or manipulation of element information that may
not even be available.

We refer to the approach developed here as adaptive because it involves self-
testing to expose slowly converging error components and adaptation of the schemes’
components to improve themselves. The acronym αMG is used to refer to the general
class of multigrid methods of this type, to suggest their primal algebraic nature: we
have in mind methods that use only the defining characteristic of algebraic smoothness
and must use an automatic, algebraic process to determine additional characteristics
that enable effective determination of the full MG algorithm. The additional abbre-
viations αAMG and αSA, respectively, are used to refer to the specific AMG and SA
versions of αMG.

In the next section, we give a brief description of standard AMG to set the stage
for the development of αAMG in the following sections. Section 3 provides an intro-
duction into the adaptive framework and develops some fundamental principles that
guide our construction of the adaptive process. In Section 4, we discuss details of the
interpolation scheme used, as well as some of its theoretical properties. Some impor-
tant details of implementation are discussed in Section 5, and numerical performance
is illustrated in Section 6.

2. Standard AMG. The key to the efficiency of any multigrid process lies in
the complementarity of the relaxation and coarse-grid correction processes. For this
reason, any discussion of the classical AMG algorithm begins with the defining prop-
erty of algebraic smoothness that the residual is, on average, small after a few sweeps
of relaxation: (Ae)i ≈ 0 for each point i. Considering pointwise relaxation, such
as Gauss-Seidel, and a symmetric positive-definite operator, such errors are typically
associated with the small eigenvalues of the operator, and this is often what is meant
when discussing algebraically smooth errors. Also central is the assumed property
that such errors vary slowly along strong connections in the matrix. This additional
assumption is generally applicable for discretizations of scalar elliptic PDEs, for which
AMG was originally designed. Other problems, such as systems of PDEs, may re-
quire other assumptions on the nature of algebraically smooth errors. In any case,
awareness of this assumption is important in analyzing the performance of AMG,
particularly when it is poor.

To construct interpolation to approximate a general algebraically smooth error,
e, we use the premise of a small residual (that, for example, eT A2e � ρ(A)eT Ae,
where ρ(A) is the spectral radius of A) to conclude that, for a given row, i, (Ae)i ≈ 0
or

aiiei ≈ −
∑
j 6=i

aijej . (2.1)

Now, suppose that a coarse set of points that forms a subset of the fine degrees of
freedom (DOFs) has been chosen (strategies for which are discussed below). Then,
the fine-level DOFs can be represented as {1, 2, . . . , N} = C ∪ F , where C is the set
of coarse-level points and F is the set of remaining fine-level points (so C ∩ F = ∅).
Since A is sparse, we introduce “neighborhood” notation: Ni = {j 6= i : aij 6= 0},
Ci = C ∩Ni, and Fi = F ∩Ni. Equation (2.1) can then be rewritten as

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek. (2.2)
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Were the last sum not present in Equation (2.2), this expression could be used to
define interpolation because it would give the F -point value, ei, approximately as a
sum of the Ci-point values. The aim is therefore to “collapse” the connections from
point i to points k ∈ Fi onto the points {j ∈ Ci} ∪ {i}. That is, we want to set aik,
k ∈ Fi, to 0 while adjusting aij , for j ∈ Ci, and aii in some way to compensate for
the inaccuracies this elimination introduces. The main assumption needed to collapse
the stencil is that the values of algebraically smooth e at Fi points can be written in
terms of its values at points in Ci ∪ {i}:

ek ≈
∑
j∈Ci

ωi
kjej + ωi

kiei, for k ∈ Fi. (2.3)

We could then substitute this expression into the latter sum in Equation (2.2) to
obtain an expression for ei in terms of ej , j ∈ Ci, which is exactly the aim. Note
that Equation (2.3) is a special form of interpolation from Ci∪{i} to Fi. This special
interpolation formula is used in reducing the stencil connections to determine the final
interpolation formula, so this overall process is sometimes called “twice-removed” or
“iterated” interpolation.

Now, in classical AMG algorithms, the {ωi
kj} in Equation (2.3) are determined

from {akj} based on the additional assumption that e is constant along strong con-
nections. So, first we must ask the question as to whether the connection between
i and k is important. To do this, we define the concept of strength of connection
between two nodes. Considering the connections in the matrix to represent weights
on the edges of the matrix graph (if aij = 0, there is no edge between nodes i and
j), node i is said to strongly depend on node j if −aij ≥ θ max

k 6=i
{−aik}. Likewise,

node i strongly influences node j if −aji ≥ θ max
k 6=j
{−ajk}. Here, θ is a predetermined

threshold value, 0 ≤ θ ≤ 1, often chosen to be 0.25.
Now, if k does not strongly influence i, then its value is not helpful in interpolation

as it is not a strong interpolation point. The set of such k is denoted Fw
i and referred

to as the set of weak connections. These connections are not simply discarded; rather,
their values are collapsed onto the diagonal. That is, ωi

kj = 0 for j 6= i, and ωi
ki = 1.

Notice that this approach is, in fact, quite stable. If the classification of k ∈ Fi

misidentifies a strong influence as a weak one, it replaces the value ek with ei, which
(because of the assumption about smooth error and strong connections) are, in fact,
approximately equal.

The remaining k ∈ Fi \Fw
i ≡ F s

i all strongly influence i. Adding the requirement
that a node k ∈ F s

i is also strongly dependent on some j ∈ Ci, then we can hope to
determine the value at point k based on the coarse-grid neighbors it has in common
with i. Since the strength of k’s connection to a point j ∈ Ci is proportional to the
matrix coefficient akj , the value ek can be approximated by the average of these ej

weighted by their coefficients. That is,

ek =

∑
j∈Ci

akjej∑
l∈Ci

akl

.

An important property of this intermediate interpolation formula is that it is an
average; if e is constant for all j ∈ Ci, then it takes the same value at k. For
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problems such as the Laplacian, where the smoothest mode is the constant vector (up
to boundary conditions), it is quite important to ensure the accuracy of interpolation
for this mode.

Combining these approximations yields an overall interpolation formula for i ∈ F :
ei =

∑
j∈Ci

wijej , with

wij = −

aij +
∑

k∈F s
i

 aikakj∑
l∈Ci

akl


aii +

∑
m∈F w

i

aim

.

The effectiveness of this interpolation operator is now very dependent on the
quality of the coarse-grid points selected. This is apparent from the assumption
that each point k ∈ F s

i has a strong dependence on some j ∈ Ci. In addition,
we need the coarse grid to satisfy an often contradictory condition that it must be
small enough that there is a real benefit to coarsening. There are many options for
choosing the coarse-grid points, such as the approach of [27] where the number of
strongly connected neighbors of each point is considered. Also of interest is the recent
work on compatible relaxation; cf. [16, 19]. We do not discuss the selection process
further, except to say that it is of primary importance to the efficiency and success of
an algebraic multigrid method: the coarse level must support accurate approximation
of algebraically smooth error using only a small fraction of the fine-level points.

Once a set of coarse points, C, and an interpolation operator, P , have been
chosen, we must still choose a restriction operator, R (for transferring the residuals
to the coarse level), and a coarse-level operator, Ac (for defining the coarse-level
correction equation). Assuming that A is a symmetric and positive-definite matrix,
it is natural to define these operators by the so-called Galerkin conditions (cf. [27]):

R = PT and Ac = RAP.

These definitions arise from minimization principles and are a result of choosing R
and Ac so that the coarse-level correction minimizes the fine-level A-norm of the error
over all such corrections.

AMG is a generalization of classical geometric multigrid. It is an efficient solver
for many problems, including those involving discretizations on stretched or irregular
grids, or discretizations of many problems with anisotropic or variable coefficients.
There are, however, still many problems for which classical AMG is not effective,
including problems with highly anisotropic or highly variable coefficients and those
coming from the discretization of certain systems of PDEs such as linear elasticity.
Simply put, the further the algebraically smooth components of a problem are from
being locally constant, the more the performance of classical AMG suffers.

3. The Adaptive AMG Framework. The details of the αAMG and αSA[11]
algorithms are quite intricate. We arrived upon them by careful consideration of the
basic principles and methodologies of an adaptive algorithm. For this reason, our
discussion focuses on these basic principles before the particular details. We restrict
our attention for the remainder of the paper to the case that the N × N matrix,
A = (aij), is symmetric and positive definite, although most of what is developed
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applies to more general cases. Our aim is to develop an algebraic multigrid process
to solve the matrix equation,

Ax = b,

without a priori knowledge of the character of algebraically smooth error.

3.1. The Adaptive MG Algorithm. An efficient multigrid process for solv-
ing Ax = b relies on the appropriate complementarity of relaxation and coarse-grid
correction. Thus, we view the goal of the adaptive process as the development of a
representative collection of vectors for which the chosen relaxation process is ineffi-
cient. In its most basic form, the adaptive process would be quite simple: relax on
a significant number of vectors to expose slow-to-converge components (which act as
prototypes of algebraically smooth error) and then choose interpolation to fit these
vectors. Such an approach may, however, be quite inefficient and a multiscale view-
point often proves more useful.

Suppose we know the matrix, A, but nothing more. Relaxation is then the only
feasible way to expose algebraically smooth error components. However, with no fur-
ther knowledge, there is no way of predicting, a priori, how many distinct components
are needed to achieve good results. Experience (and, in the case of SA, theory [29])
has shown that, for discretizations of second-order scalar elliptic PDEs, a single com-
ponent is sufficient, whereas six components may be needed for a problem such as 3D
linear elasticity. Thus, to arrive at an optimal solver with a minimal amount of work,
it seems necessary to start with a single vector and introduce new prototypes as the
evolving method proves inadequate.

The situation is then that we have a given matrix and seek to find a single
algebraically smooth vector upon which to base interpolation. Relaxation alone can
achieve this, simply by iteration on the homogeneous problem. However, it typically
requires a huge number of relaxations to expose a global algebraically smooth vector,
and so we seek to expose such components through multiscale development instead.
We first relax only a few times, which should be sufficient to expose errors that are
smooth enough to be handled on the first coarse grid. Smoother errors may be exposed
by relaxation on the homogeneous problem on this coarse grid, particularly since the
injected fine-grid prototype is a good initial guess for the algebraically smooth error
we seek. The coarse-grid algebraically smooth error may then be used to create a
still coarser grid in the usual multigrid fashion. Just a few steps of relaxation on
the homogeneous problem on the finest grid quickly reduces a significant portion of
a random initial guess, leaving error that can then be said to be locally algebraically
smooth. If this prototype is used locally to define interpolation from some preselected
coarse grid, then a coarse-grid problem that adequately represents the algebraically
smooth error on the fine grid can be created. We can now iterate to an appropriate
coarsest grid and interpolate a prototype of the smooth error to all grids. Proceeding
recursively, this resembles a full approximation scheme (FAS; cf. [5]) multigrid process
for the algebraically smooth component, rather than the usual correction scheme
method.

In this manner, a good prototype of a single algebraically smooth component
can be determined and the resulting solver tested by applying it to the homogeneous
problem, Ax = 0, with a random initial guess. If it proves sufficient, then the adap-
tive stage is complete. Inefficiency in the resulting solver indicates that relaxation
and coarse-grid correction are not yet appropriately complementary, and that there
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are distinct algebraically smooth components that are not being well enough approx-
imated on the coarser levels. Since these components are being reduced neither by
relaxation nor coarse-grid correction, they can be exposed by an iteration as above
with the current solver taking the place of relaxation. This may be repeated until
acceptable convergence rates are attained.

Thus, we sketch the adaptive procedure as
Algorithm 1 (Abstract Adaptive Process).
1. Let k = 1 and x(1) be a random vector. Define, for all grids l, the methods

CYCLEl(x(l),b(l)) to be ν relaxation sweeps on A(l)x(l) = b(l).
2. CYCLEk(x(k),0).
3. If not sufficiently coarsened, form interpolation, Ik

k+1, and its (Galerkin)
coarse-grid operator. Let x(k+1) = (x(k))c (that is, x(k) evaluated at the
grid k + 1 points), k = k + 1, and goto Step 2.
Otherwise, continue.

4. While k > 1, let k = k − 1, interpolate the coarse-grid approximation,
x(k) = Ik

k+1x
(k+1), and perform CYCLEk(x(k),0).

5. Let k = 1 and x(1) be a random vector. For all grids l, redefine the cy-
cle, CYCLEl(x(l),b(l)), to be ν current V-cycles on A(l)x(l) = b(l). If the
performance of CYCLE1(x(1),0) is not acceptable, go to Step 2.

3.2. Principles. Perhaps the easiest way to understand the adaptive method-
ology is to begin with the principles upon which it is based. Here, we list the core
ideas that motivate and provide a foundation for αMG, with the primary focus on
the αAMG scheme. The pragmatic reader may prefer to defer reading this discussion
until after Section 4 or [11].

Algebraic Smoothness. The concept of algebraic smoothness is of utmost im-
portance in achieving an optimally efficient algebraic multigrid method. Since we
only allow reduction of the error through the processes of relaxation and coarse-grid
correction, the algebraically smooth error (which, by definition, is slow to be resolved
by relaxation) must be accurately corrected from the coarse grid. That is, interpola-
tion must be very accurate for algebraically smooth components. In fact, a stronger
requirement is imposed by the eigenvector approximation criterion that, for a given
eigenvector, u, of A, interpolation must reconstruct u to an accuracy proportional to
its eigenvalue [6, 22].

The algebraic multigrid methods considered here are based on some defining char-
acteristic of what algebraic smoothness means. This definition generally amounts to
articulating an algebraic property of the errors that the given (fixed) relaxation pro-
cess cannot reduce effectively. For example, classical AMG is developed based on
properties of a polynomial iterative method such as the Richardson iteration:

x̃← x̃− 1
‖A‖

(Ax̃− b).

For this iteration, the error, e = A−1b− x̃, converges slowly in the A-norm,

‖e‖A =
√

< Ae, e >,

if and only if e yields a small generalized Rayleigh quotient:

RQA(e) =
< Ae, Ae >

‖A‖ < Ae, e >
.
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For this reason, the set of algebraically smooth vectors is often also referred to as
the near null space of A; we use these two terms interchangeably, with the prevailing
meaning to be that of vectors that the chosen relaxation scheme is slow to reduce.
Proper use of this defining property of algebraic smoothness gives AMG its potential
for optimal performance over a wide range of problems. It enables coarsening processes
that rightfully depend on the matrix and hopefully capture the errors that relaxation
cannot eliminate.

Most algebraic multigrid methods, however, require additional assumptions re-
garding algebraically smooth error that allows them to capitalize on the special na-
ture of the assumed algebraic smoothness. For example, classical AMG rests on two
related main assumptions: that the constant vector, 1, must be interpolated exactly;
and that algebraically smooth errors vary slowly along strong connections. While this
enables effective treatment of many problems, it also restricts the class to which these
algorithms apply. Many discrete systems exhibit algebraically smooth errors that vary
dramatically across strong connections and many others offer no clear understanding
of what strength of connection even means. Also, as we discuss further in the next
section, 1 is not necessarily a good representative of algebraically smooth error. A
major goal of the adaptive process is to capitalize on the definition of algebraically
smooth error without making additional specific assumptions about its character.

Prototypes. A central idea in the development of αAMG methods is the use of
prototypes that serve as representatives of algebraically smooth error. In fact, proto-
types are used in the development of nearly all multigrid methods, often implicitly.
As mentioned above, for example, classical AMG uses 1 to build its matrix-based
interpolation coefficients (see Equation 2.1 and the discussion in Section 2). αAMG
differs in that it attempts to generate these prototypes automatically.

Given a set of these prototypes, it is important to recognize that they should only
be used locally as representatives of algebraically smooth error. Otherwise, it would
not be possible to achieve optimality. As an illustration of this point, consider the fact
that the preconditioned conjugate gradient method can be interpreted as a two-level
αMG method that uses the generated prototypes globally as representatives of slow-to-
converge error components (here, the smoother plays the role of the preconditioner and
the coarse-grid corrections are the Krylov subspace projections; see [15] for details).
In general, errors left by relaxation consist of a large fraction of the spectrum of
the matrix, so that coarsening must effectively approximate O(N) components with
varying degrees of accuracy. The goal in designing a multigrid interpolation operator
is to achieve this approximation property by using only a small, O(1), number of
computed prototypes.

This use of a small number of prototypes to achieve approximation of a much
larger space is a cornerstone of multigrid methods. It is essential, then, that each
prototype be used effectively as a representative of many components with similar local
character. Remember that the constant vector, 1, is used in classical AMG to define an
interpolation whose range not only includes 1, but also approximates all smooth errors.
This is analogous to how local basis functions are used in finite elements: piecewise
polynomial basis functions are used locally not only because they can reconstruct their
global counterparts, but also because they can approximate all smooth components of
the solution of the PDE. The global prototype is a representative of many algebraically
smooth components and, thus, is used locally to determine an interpolation operator
that has many such smooth components in its range.
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Self-Testing. Computation of a rich supply of prototypes can be done by care-
fully testing the algorithm as it evolves. These self-tests should be done on a problem
with known solution. The homogeneous problem, Ax = 0, is especially appropriate
because it avoids trouble with machine representation when the approximation is very
close to that solution. For our αMG schemes, we can test the current version of the
algorithm on Ax = 0 by measuring the A-norm of the error of successive iterates.
This test serves a dual role: it signals when the algorithm is performing well enough
and it produces a good prototype when it is not. Assuming that enough iterations are
used, the prototype must be appropriate because it is algebraically smooth (relaxation
is not eliminating it), yet poorly represented by whatever current coarsening process
is being used (if any). This prototype can then be used in the underlying algorithm
precisely where the additional smoothness assumptions were used. For classical AMG,
this means that the prototype would provide information on the correct coefficients
to use in eliminating the matrix connections to points that are only on the fine level.

While the homogeneous problem is important as a measure of performance be-
cause it has a known solution, other measures can be useful in monitoring the evolving
behavior and improving the prototypes. This issue is most clearly exposed when a
direct solver is used on the coarsest level, where solving the homogeneous problem
seems paradoxical: why solve Ax = 0 when all you presumably get is x = 0? At
this point, a simple approach is to just accept the prototype computed on the next
finer level so that the coarsest level is never really used in the adaptive process. This
means that the prototype is never really improved there either. It may be better to
enhance the coarsest-level prototype by using a more precise measure of smoothness.
For our αMG schemes, we could choose to improve the prototype, x, on the coars-
est level by minimizing the generalized Rayleigh quotient, RQA(x). The situation is
more complicated in the case of multiple prototypes, however; in neither the scalar
PDE case considered in §4 nor in the αSA method in [11] have we found any need for
improving the coarsest-level prototype in this manner, so we choose not to address
this issue further. The Rayleigh quotient can, however, be useful as a diagnostic tool
in assessing how the adaptive process is behaving, as in [20].

Range of Interpolation. The primary aim of coarsening in any multigrid pro-
cess is to appropriately complement relaxation, allowing fast solution of the given
system of equations. To accomplish this, all algebraically smooth errors must be ap-
proximated well by vectors in the range of interpolation. Within the adaptive process,
such errors are represented only by the prototypes and, therefore, the primary aim of
this process is to develop an interpolation operator that accurately approximates the
prototypes in such a way that good multigrid convergence is obtained by the resulting
cycle.

Achieving the desired multigrid performance requires more than simply fitting the
set of given prototypes exactly. Error in the direction of a single prototype can easily
be corrected from a single coarse degree of freedom, but this generally does not provide
enough of an acceleration to the relaxation process to yield a scalable algorithm.
Indeed, such an algorithm resembles a preconditioned conjugate gradient iteration
[15] that would require many steps to converge for the matrices that typically arise
from discretized PDEs. To develop an effective interpolation operator, it is necessary
to consider each prototype as a representative of a class of errors that relaxation is slow
to reduce. Since pointwise relaxation is a local process, any error that has a similar
character to the prototype, measured locally, is also expected to be slow to converge
with relaxation. We look for all such errors to be approximated by the range of
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interpolation and, thus, employ a localization (partition of unity) strategy in defining
our multigrid interpolation operator. This strategy, unfortunately, is also generally
not sufficient to achieve good multigrid performance: piecewise constant interpolation
fits the prototypical constant vector exactly, and many locally similar errors well, yet
leads to poor V-cycle performance for solving Laplace’s equation [5]. Interpolation
must also be chosen so that a variational coarse-grid correction is not distracted by
non-algebraically smooth errors that are also in the range of interpolation. Classical
AMG interpolation (as discussed in §2) is known to attain all of these properties for
typical scalar elliptic equations based on the single prototype of the constant vector,
and we aim to mimic these properties here in the more general adaptive AMG setting.

Constructing interpolation in this way (described in detail in Section 4) has impor-
tant consequences. Not only is each prototype fit closely by the range of interpolation,
but so are all locally similar vectors are as well. Thus, the range of interpolation in-
cludes many algebraically smooth vectors, including, if possible, many vectors that
are significantly smoother (measured, for example, by their Rayleigh quotients) than
the prototype used to construct interpolation in the first place. Given the lower cost
of relaxation on the coarser grid, we look to improve the prototype through iteration
on the homogeneous coarse-grid problem. Thus, we coarsen in the adaptive process,
to quickly expose better prototypes of the fine-level algebraically smooth error. As
the fine-level prototype is, itself, well-represented on the coarse grid, the adaptive
process attempts to improve the prototype directly on this level, instead of through
a more cumbersome correction scheme. Success of this process rests on our ability to
find components in the range of the constructed interpolation operator that are sig-
nificantly smoother than the current prototype. Again, the keys to this success are in
AMG’s local operator-induced interpolation approach, which ensures that the range
of P is rich in components that are locally similar to the prototypes, and the varia-
tional construction of the coarse-grid operators through the Galerkin condition [27],
which allows iteration on the coarse grid to find a significantly smoother prototype
than the one upon which interpolation was based (if such a vector exists).

Optimality. Multigrid methods are useful solution techniques because they ex-
hibit optimal traits, such as O(N) or O(N log N) scaling in both number of operations
and storage. As such, any adaptive multigrid process should also retain this optimal-
ity. In particular, the adaptive process must not make requirements of the solver that
compromise the optimality of the overall process and must itself scale optimally in
operation count and storage.

Classical AMG controls complexity by its intricate way of determining the coarse
points and its careful use of the matrix entries. The adaptive AMG approach assumes
that a suitable coarsening process is available (such as compatible relaxation [7, 16,
19]), with the attendant assumption that there is sufficient reduction in grid sizes
from fine to coarse levels. When fitting multiple prototypes, however, it is tempting
to abandon the tight control on the stencil of interpolation (such as to the nonzero
pattern of Afc, the submatrix of A linking fine- to coarse-grid nodes, as is used in
classical AMG) to allow for exact fitting of more prototypes. This must be done with
utmost care, as each new nonzero entry in the interpolation operator can lead to new
nonzero connections in the coarse-grid matrix. Care must also be taken to ensure
that the stencil of interpolation is not too small: early experiments limited the size
of the set of coarse-grid points from which any fine-grid point i is interpolated, Ci,
to the number of prototypes being fit, which led to an extremely inefficient algorithm
because a single prototype could only be used to define one-sided interpolation, and
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so multiple prototypes were needed for good convergence even for second-order, scalar
PDEs.

Constructing a prototype set of minimal size is important to practical success
and control over the complexity of the algorithm. While the same near null space
may be well-represented by a small number of very precise vectors or a larger num-
ber of less-resolved prototypes, the costs of the adaptive process and, possibly, the
resulting method increase with the number of prototypes. For this reason, it is often
more efficient to consider improvement of the existing prototype(s) than to add a new
one. As each prototype emerges, we can consider improvement of its representation
by running the setup cycle again, with the prototype as an initial guess for the al-
gebraically smooth error. This either improves the prototype as a representative of
the algebraically smooth components that are not well-represented by the rest of the
prototype set, or signals that the prototype is a strong representative of such com-
ponents. In either case, valuable information about the adaptive process is gained,
either through an improved prototype, or the knowledge that further improvement in
the resulting algorithm must be gained through additional prototypes.

To ensure that the adaptive process is also optimal, adaptations are made when-
ever sufficient new information becomes known, but also only when the change is
expected to improve the overall algorithm. For example, we develop the algebraically
smooth prototype in a manner similar to the full approximation scheme, representing
the prototype on all levels and looking for the algebraically smoothest component on
each level. The prototype on a given level is discarded when it can be improved from
a coarser grid, as we expect relaxation on coarser levels to better expose the alge-
braically smooth components that we seek. We do not, however, update interpolation
or coarse-grid operators on the upward traverse of the setup V-cycle. Such an adap-
tation would be wasted because operators at higher levels also change as the cycle
moves toward the finest grid. For this reason, while we allow for multiple V-cycles
to be performed in the setup phase, the last cycle always terminates at the coarsest
grid.

Termination of the adaptive process must also be properly implemented in order
to maintain optimality. Experience has shown that improvement in the resulting
multigrid process becomes less cost-effective with the number of setup phases and
the total amount of relaxation in the adaptive step. A method with an acceptable
convergence factor may be attained after even a single adaptive step, and a second
adaptive step improves this factor by only a fraction of a percent. This may be
addressed by reducing the amount of relaxation per adaptive step to a single sweep on
each level, and monitoring the convergence of the prototype vector between sweeps (for
example, measuring its Rayleigh quotient). Unfortunately, the majority of the cost of
an adaptive step is in the computation of interpolation and coarse-grid operators and
not relaxation, so performing many adaptive steps is undesirable. For this reason, we
choose a strategy attempting to minimize the number of setup cycles, motivated in
[20], with enough relaxations in these cycles to quickly achieve convergence factors
within a few percent of the apparent optimal performance.

4. Interpolation for Adaptive AMG. Our goal in developing a new type of
algebraic multigrid method is to extend the applicability of classical AMG schemes.
Thus, a primary concern is the generalization of the definition of interpolation in
AMG. The guiding principles for this generalization come from basic properties of all
multigrid algorithms:

• simple relaxation is inefficient for solving Ax = b on error components, e,
11



whose residuals, Ae, are small relative to e in some sense; and
• efficient multigrid performance depends on effective complementarity of relax-

ation and coarsening so that they efficiently cooperate to eliminate all error
components.

In this section, we propose a method for choosing interpolation that is appropriate
in the case of M-matrices for which the algebraically smoothest mode is not close to
the constant vector. As such, this interpolation may be viewed as an extension of
the classical AMG interpolation [27]. In developing this new interpolation procedure,
we consider the case of pure algebraic coarsening; however, for practical reasons, we
chose to first implement the algorithm in the case of regular geometric coarsening. We
do not address the important question of coarse-grid selection here, but expect that,
in a practical situation, the coarsening techniques of compatible relaxation [7, 16, 19]
would be necessary to choose an adequate coarse grid. The numerical results presented
in Section 6 are for this interpolation on geometrically chosen grids in the case of a
scalar PDE.

4.1. Definition of Interpolation. Since the success of our methods depends on
the complementarity of relaxation and coarse-grid correction, a good starting point
for defining interpolation is to consider a vector, e, that is not quickly reduced by
relaxation. Using a simple (pointwise) relaxation scheme, such as Gauss-Seidel, this
also means that Ae ≈ 0, or

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek, (4.1)

where, as in Equation 2.2, we assume a splitting of Ni into Ci and Fi. Again writing
error ek, k ∈ Fi, as

ek ≈
∑
j∈Ci

ωi
kjej + ωi

kiei

and using this expression in the second sum of Equation 4.1 yields a general interpo-
lation formula for point i ∈ F ,

ei = −
∑
j∈Ci


aij +

∑
k∈Fi

aikωi
kj

aii +
∑
k∈Fi

aikωi
ki

 ej . (4.2)

The αAMG interpolation is different from that used in classical AMG [27] in that
{ωi

kj} are chosen to depend on both the entries in A and a (computed) prototype,
x(1), that represents many algebraically smooth components. How this prototype is
computed is the subject of Section 5.

To be specific about the choice of {ωi
kj}, consider the idea of twice-removed

interpolation [8]. Suppose we have a point, i, whose neighbors have been partitioned
into the two sets, Ci and Fi. The problem of collapsing the F − F connections is
equivalent to that of determining a way to interpolate to point k ∈ Fi from points
j ∈ Ci (or, more generally, j ∈ Ci ∪ {i}). That is, we seek to write (as before)

ek =
∑
j∈Ci

ωi
kjej , (4.3)
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dropping the term ωi
kiei, under the assumption that k is as strongly connected to

some point (or points) in Ci as it is to i. If there is a particular vector, x(1), that we
want to be in the range of interpolation, then we ask that Equation 4.3 hold when e is
replaced by x(1). This constraint with one vector, x(1), fixes one DOF of the possibly
many for set {ωi

kj}, but leads to a unique Fi-interpolation formula if it is restricted
to be of the form D−1Afc, where D is a diagonal matrix. (This choice is motivated
by the discussion in [10].) The matrix, D, is determined by

di
kkx

(1)
k = −

∑
j∈Ci

akjx
(1)
j

or

di
kk =

−
∑
j∈Ci

akjx
(1)
j

x
(1)
k

. (4.4)

Thus, choosing ωi
kj = (di

kk)−1akj in Equation 4.3, the Fi-interpolation formula is

ek = −
∑
j∈Ci

akj

di
kk

ej .

Interpolation to i ∈ F , given by Equation 4.2, then has the particular form

ei = −
∑
j∈Ci

1
aii

aij +
∑
k∈Fi

aik
akjx

(1)
k∑

j′∈Ci

akj′x
(1)
j′

 ej . (4.5)

Note that the interpolation operator, P , as a mapping from C to F ∪C, then has the
form

P =
[

W
I

]
,

where W is the matrix of coefficients determined by Equation 4.5.
This αAMG interpolation formula is a simple generalization of the classical AMG

formula that allows for a sense of smoothness that may differ from what AMG con-
ventionally uses. The primary assumption used in standard AMG to collapse F − F
connections is that the smoothest error component is constant [27]. Thus, classi-
cal AMG interpolation is recovered from the formula in Equation 4.5 by choosing
x(1) ≡ 1.

The iterated interpolation of Equations 4.3 and 4.4 was chosen to exactly match
the near null space approximation, x(1). The final interpolation in Equation 4.5,
however, does not necessarily match this vector exactly. For a fine-grid point, i, the
misfit is easily calculated as

x
(1)
i − (Px(1)

c )i =
1
aii

(Ax(1))i. (4.6)

This is in accord with the classical AMG point of view that interpolation must be more
accurate for errors that yield smaller residuals. In fact, it may be directly compared
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with the eigenvector approximation criterion, as described by Brandt [6, Theorem
4.1], which relies on the existence of a constant, C0, bounded away from zero, such
that

C0

∑
i

aii(ei − (Pec)i)2 ≤ eT Ae,

for all e ∈ RN . Squaring Equation 4.6, multiplying through by aii, and summing over
both fine- and coarse-grid points, we have∑

i

aii(x
(1)
i − (Px(1)

c )i)2 ≤
∑

i

1
aii

(Ax(1))2i = (x(1))T A

(
diag(

1
aii

)
)

Ax(1)

≤ ρ

(
A

1
2

(
diag

(
1
aii

))
A

1
2

)
(x(1))T Ax(1).

For a diagonally dominant operator with constant diagonal, such as the finite-element
Laplacian, ρ

(
A

1
2

(
diag

(
1

aii

))
A

1
2

)
is easily bounded by 2 and so the constant, C0,

in Brandt’s bound is not made unduly small due to the misfit in the interpolation of
x(1). While such a bound is only for the prototype, x(1), and not for any arbitrary
fine-grid vector (as required by the eigenvector approximation criteria), we consider
x(1) to be an appropriate prototype of the algebraically smooth error for which this
bound is most difficult to achieve and, thus, indicative of a good interpolation scheme.

Remark 1. While this paper considers methods involving just one prototype
vector, x(1), appropriate for scalar PDEs, these concepts can also be generalized to
systems. Consider discretizing a system so that its DOFs are located on the same
grid, i.e., there are d DOFs co-located at each node. Since we seek to generalize the
ideas from the scalar case, we start by generalizing the notation: Akj becomes the
d× d matrix of connections between the DOFs located at nodes k and those located
at node j, the diagonal entries of D (Di

kk) become d× d matrices, and x(1) becomes
the matrix, X(1), composed of d columns of distinct prototypes. Its restriction to the
d DOFs at node k is denoted by X

(1)
k . The analogue of Equation 4.4 is then

Di
kk = −

∑
j∈Ci

AkjX
(1)
j

(X(1)
k

)−1

.

The Fi-interpolation formula for systems thus becomes

ek = −
∑
j∈Ci

(Di
kk)−1Akjej ,

which yields the final nodal interpolation formula

ei = −A−1
ii

∑
j∈Ci

(
Aij +

∑
k∈Fi

Aik(Di
kk)−1Akj

) ej .

4.2. Theoretical Properties. One situation that can cause difficulty for clas-
sical AMG is when the matrix is rescaled. For example, if A is the discretization of a
Poisson-like problem, then it is generally true that A applied to 1 yields a relatively
small residual: A1 ≈ 0. This means that constant vectors are indeed algebraically
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smooth, as classical AMG presumes. Rescaling A by multiplying it on both left and
right (to preserve symmetry) by a positive diagonal matrix can dramatically change
this property. Thus, if A is replaced by Â = SAS for some positive diagonal matrix
S, then Â(S−11) ≈ 0, and the new near null space component is actually S−11. If the
diagonal entries of S have significant variation in them, then S−11 has a significantly
different character than does 1. For classical AMG, this can cause a dramatic deteri-
oration in convergence rates, although it can be prevented if the scaling is supplied to
AMG so that the original matrix can essentially be recovered (as in [8]), but this is
not always possible in practice. Fortunately, as the following result shows, such scal-
ing causes no problem for αAMG, provided the scaled prototype can be accurately
computed.

Theorem 4.1. Given a positive diagonal matrix, S, vectors x(1), x̂(1) = S−1x(1),
b, and b̂ = Sb, then the convergence of αAMG on Âx̂ = b̂ with prototype x̂(1)

(measured in the Â-norm) is equivalent to that of αAMG on Ax = b with prototype
x(1) (measured in the A-norm).

Proof. Given a coarse-grid set, C, and the complementary fine-grid set, F , parti-
tion A and S to have the forms

A =
[

Aff Afc

Acf Acc

]
and S =

[
Sf 0
0 Sc

]
,

so that

Â =
[

SfAffSf SfAfcSc

ScAcfSf ScAccSc

]
.

The weights, ω̂i
kj , for matrix Â are given by

ω̂i
kj =

âkj x̂
(1)
k∑

j′∈Ci

âkj′ x̂
(1)
j′

=
skakjsjs

−1
k x

(1)
k∑

j′∈Ci

skakj′sj′s−1
j′ x

(1)
j′

= s−1
k ωi

kjsj ,

where the weights, ωi
kj , are chosen as for matrix A. Equation 4.5 then gives (with

some algebra)

ei = −
∑
j∈Ci

s−1
i


aij +

∑
k∈Fi

aikωi
kj

aii

 sjej , i ∈ F.

For i ∈ C, again simply take the value from the coarse-grid and assign it as the value
on the fine-grid. Thus, the interpolation operator, P̂ , is of the form

P̂ =
[

Ŵ
I

]
=
[

S−1
f WSc

I

]
= S−1PSc,

where P is the interpolation operator from the unscaled case. Further, considering
the coarse-grid operator, Âc, note that Âc = ScP

T APSc = ScAcSc, where Ac is the
coarse-grid operator from αAMG on A.
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So, the coarse-grid operator for the scaled problem is simply the scaled version
of the coarse-grid operator for the unscaled problem. Since standard relaxation tech-
niques such as Gauss-Seidel or Jacobi (both pointwise and block forms) are scaling
invariant (that is, if A is scaled to SAS as above, initial guess x(0) to S−1x(0) and
initial right side b to Sb, then the approximation generated changes from x(1) to
S−1x(1)), we see that the entire process is independent of any diagonal scaling.

Theorem 4.2. Theorem 4.1 extends to the systems algorithm, which is invari-
ant to diagonal scaling with pointwise relaxation and nodal scaling (any invertible
transformation of the DOFs located at a node) with nodal relaxation.

Proof. The proof is identical in form to the scalar case, and is, thus, omitted.

5. Determining x(1). Successful implementation of this interpolation scheme
relies on having an appropriate prototype vector, x(1) (or set of vectors, X(1)). Since
we rely on the complementarity of relaxation and coarsening, the best choice for x(1)

would be a representative of the vectors for which relaxation is inefficient. Thus, a
straightforward method for generating this prototype would be to start with a vector
that is hopefully rich in all components (i.e., all eigenvectors of symmetric A), relax
on Ax = b for some b, and then determine the error in the approximate solution
after a sufficient number of relaxations.

We typically make use of relaxation schemes whose error-propagation matrices
have the form I − BA. While, for general B, it is possible that the slow-to-converge
modes of the relaxation iteration, I − BA, are not modes for which Ae ≈ 0, in
many practical situations they are. In particular, for the pointwise relaxation schemes
considered here, the two descriptions of algebraically smooth error are equivalent. In
fact, for many choices of B, the true near null space of A is accurately reflected
in the vectors for which relaxation is inefficient. Knowledge of this space could be
used as it is with standard AMG to determine an effective coarsening process. Our
focus, however, is on the case where this knowledge is misleading, inadequate, or even
unavailable. We, thus, concentrate on the case that a good prototype of errors that
are slow to converge under the given relaxation scheme, x(1), is not known.

Start with a vector generated randomly from a uniform distribution on (0, 1).
(Consideration of positive vectors is motivated by the case of scalar, second-order
operators, which tend to discretize as M-matrices and so have positive near null space
vectors. A more general choice is appropriate when considering problems such as
linear elasticity, but care must be taken because the definition of interpolation for
αAMG presented here breaks down if

∑
j∈Ci

akjx
(1)
j = 0 for any i ∈ F , k ∈ Fi.)

Such a vector is, in general, not equally rich in all error components. However, in
the scalar PDE case, it tends to be rich enough that a few relaxation sweeps on the
homogeneous problem, Ax = 0, produce a good representative of the slow-to-converge
components. Note that the homogeneous problem is advantageous to use here because
the prototype is simply the error in approximating the exact solution, x = 0. Thus,
starting with a random initial guess and performing relaxation on Ax = 0 generates
a prototype vector, x(1), that represents the slow-to-converge components and that
can then be used in the interpolation formula developed in Section 4.1.

Unfortunately, generating the prototype by fine-grid relaxation alone is effective
only in terms of the first coarse level and is, in general, quite inefficient in a multilevel
setting. To produce a prototype that is smooth enough to represent the components
associated with smoothness on very coarse levels, a multilevel scheme is needed. Here,
we again measure smoothness by the eigenvector approximation criterion. Basing ev-
ery interpolation operator on a single component, whose Rayleigh quotient is near the
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Fig. 5.1. The Setup Scheme for Determining x(1)

minimal eigenvalue on the finest grid, requires significant algebraic smoothness in that
component as the eigenvector corresponding to this eigenvalue must be interpolated
with accuracy proportional to this small value. For coarser grids, such smoothness is
much more efficiently represented by calculation on these grids. Thus, we start with
a random guess on the fine level and perform a few (ν0) relaxation sweeps there to
generate a tentative x(1). Using this current prototype, an interpolation operator is
computed (as in Section 4.1) and the coarse-level and restriction operators are formed
using the Galerkin condition. We use injection of x(1) (direct restriction of the values
on the C-points) to form a coarse-level initial guess, relax ν1 times, and recurse to the
coarsest level. From this coarsest level, interpolate and relax ν2 times on the vector
all the way to the finest level, but do not recompute the coarse-level and grid-transfer
operators.

The cycle can then be repeated, using the resulting vector as an overall initial
guess in an attempt to further improve the prototype. This cycling strategy is il-
lustrated in Figure 5.1, where boxes indicate stages where coarse-level operators are
computed and circles indicate stages where only application of the current solver is
necessary. Note that since the multigrid operators are computed only on the down-
ward part of the cycle, no relaxation is necessary on the upward part of the final
setup cycle. As is discussed in Section 6, this procedure yields multigrid solvers with
convergence factors bounded independently of mesh size (tested up to 1024 × 1024
grids) for many scalar problems.

One important benefit of generating the initial prototype vector in a multilevel
fashion is the ability to implement a proper transition to simplicity in the algorithm.
That is, since we begin by relaxing on a random vector (assumed to be rich in all
components), it is easy to tell if relaxation alone is sufficient to solve either the fine
grid problem or one of the generated coarse-level problems. If this is indeed the case,
then no additional labor is needed in designing an algorithm because an efficient solver
already exists.

For systems of PDEs and higher-order problems, an added wrinkle is the need to
generate multiple prototype vectors. The cycling scheme described above can easily
be generalized to account for multiple prototypes, by replacing the role of relaxation
with the current solver. That is, once a single prototype is known, additional pro-
totypes need to be generated that are both algebraically smooth, and that represent
distinct slow-to-converge components from the existing prototype. One way to gen-
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erate such components is to apply the current solver to the homogeneous problem, in
much the same way as we currently use relaxation to expose its own slow-to-converge
components. Further investigation is necessary, however, to ensure that the generated
prototypes represent a full set of algebraically smooth errors, without being redun-
dant. This is the subject of current research.

6. Numerical Results. To examine the feasibility of this approach, we imple-
mented a solver for the special case of a rectangular grid in two dimensions with
full coarsening. This restriction in generality has a notable effect on the range of
problems that are able to be reasonably considered (anisotropy, for example, becomes
much more difficult to account for in this setting). However, examining problems
without such difficulties, we feel that we can obtain a good initial indication of the
performance of this approach. In particular, the aim here is to test the quality of
the interpolation operator, not that of the coarsening procedure. Indeed, given cur-
rent research into new coarsening techniques [7, 16, 19], it is difficult to say which
coarsening method would be most appropriate for comparison.

We consider several measures of the effectiveness of the algorithm. Of primary
importance is the total time to solution, given only the matrix equation, Ax = b.
Here, solving a problem is defined as reducing the residual by 10 orders of magnitude,
and the wall-clock time to solution on a modern desktop workstation (2.66 GHz Intel
Pentium 4) is measured. Another relevant measure is the asymptotic convergence
factor of the resulting cycle. While setup costs may form a significant portion of the
cost of solving a linear system with a single right side, many problems require repeated
solution with multiple right sides (such as in implicit time stepping). In these cases,
the (possibly large) setup cost can be amortized over the number of solutions and
the cost of only the solution stage is important. The asymptotic convergence factor
reflects this cost, as a lower factor requires fewer iterations in the solution phase. We
discard the usual AMG measures of grid and operator complexity because, in the
structured coarsening framework considered here, these measures are constant for all
fine-grid operators of the same mesh and stencil sizes.

As discussed in Section 5, the setup may be performed in an iterative fashion.
This is an appealing feature because, in practice, convergence of the prototype vector
can be measured as an indicator of convergence of the method. This iteration is,
however, quite expensive as it involves computation of new interpolation and new
Galerkin coarse-grid operators at each iteration. Testing indicates that it is usually
significantly more efficient to perform more relaxation sweeps (i.e., increase ν0 and ν1)
in a single setup cycle than it is to perform multiple setup cycles with fewer iterations
per cycle to generate a single prototype [20]. Thus, in the results that follow, we first
consider performing only a single setup cycle and track the number of relaxations
(values of ν0 and ν1) necessary to achieve highly efficient solver performance. For the
problems considered here, this calibrated AMG method is typically more efficient than
the adaptive AMG method, whose results appear later. In the adaptive procedure, we
fix the number of relaxations used in each setup phase and perform setup iterations
until an acceptable solver is determined (measured by the error reduction in the
solver). Here, we use the adaptive approach described in Section 5 and Figure 5.1,
where a single prototype is iteratively improved until the resulting solver is deemed
to perform well.

We consider four PDEs as test problems, all discretized using bilinear finite el-
ements on the unit square. Problem 1 is Laplace’s Equation with pure Dirichlet
boundary conditions. Problem 2 is Laplace’s Equation with pure Neumann boundary
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conditions. Problems 3 and 4 are discretizations of

−∇ · K(x)∇p(x) = 0,

with Dirichlet boundary conditions on the East and West boundaries and Neumann
boundary conditions along the North and South boundaries. For Problem 3, K(x) is
chosen as

K(x) =
{

10−8 x ∈ [ 13 , 2
3 ]2,

1 otherwise.

For Problem 4, K(x) is assumed to be constant on each element and chosen to have
value 10−8 on 20% of the elements (chosen randomly) and value 1 everywhere else.

A significant advantage of the αAMG method is its invariance to diagonal scaling,
as shown in Section 4.2. Thus, for each of these problems, we consider the results of
such scaling. A common scaling is to make the diagonal entries of A all have value 1,
using the diagonal matrix given by sii = 1√

aii
. For Problems 1-4 above, the problems

with matrices thus scaled are referred to as Problems 1u-4u (where the u refers to
the unit diagonal of the matrix). We also consider a more drastic scaling given by
sii = 105ri , where again ri is chosen from a uniform distribution on [0, 1] for each i.
We call these Problems 1r-4r (where the r refers to the random scaling). Note that
this scaling is dependent on the mesh size, and so it is expected that the overall work
(measured relative to the cost of a fine-scale matrix-vector product), including both
setup and solution phases, will grow as the mesh size is reduced.

6.1. AMG Benchmarks. A baseline for these problems is established by con-
sidering the performance of standard AMG under the same assumptions (primarily
that coarsening is performed geometrically). Since we expect the scalings employed
to destroy any sense of strong connection in the matrix coefficients, we consider here
a “strong-connection-only” version of AMG, equivalent to setting θ = 0 in the defini-
tions of strong influence and dependence in Section 2. Wall-clock times and iteration
counts are shown in Table 6.1, while convergence factors are shown in Table 6.2.

These results show that classical AMG interpolation gives a scalable solver for
Problems 1, 2, and 3, coming directly from discretization. If, however, the discretiza-
tion matrices are scaled, then there is a significant increase in the needed work for
solution, especially noticeable as the problem grows (but also present with smaller
fine grids). Improving on the results from these unscaled problems is difficult, so our
aim should be to determine a balance where significant improvement on the results
from the scaled problems is found, while not excessively increasing the cost of solution
for problems such as 1,2, and 3. The results for the unscaled Problem 4 are typical of
the situation where, as h decreases, the problem becomes more difficult to solve due
to the increase in the number of internal material interfaces.

6.2. Calibrated AMG results. For the adaptive AMG methodology, we con-
sider several questions around the same problems. Experience has shown that a single
setup cycle is often most efficient, if parameters ν0 and ν1 can be chosen such that this
cycle yields an effective solver. How to best choose these parameters depends on our
interests. For solving the matrix equation, Ax = b, for a single vector, b, we would
like to choose ν0 and ν1 such that the total time to solution is smallest. This may
mean sacrificing performance of the solver to save cost in the setup stage. For solving
the matrix equation for many right sides, the parameters should be chosen such that
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64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.04 (9) 0.22 (9) 0.91 (9) 3.32 (9) 13.13 (9)
Problem 1u 0.05 (9) 0.24 (9) 0.86 (9) 3.33 (9) 13.15 (9)
Problem 1r > 200 > 200 > 200 > 200 > 200
Problem 2 0.04 (8) 0.20 (8) 0.81 (8) 3.12 (8) 12.30 (8)
Problem 2u 0.09 (27) 0.93 (52) 5.64 (90) 36.94 (158) > 200
Problem 2r > 200 >200 > 200 > 200 > 200
Problem 3 0.04 (9) 0.25 (9) 0.89 (9) 3.41 (9) 13.23 (9)
Problem 3u 0.11 (26) 0.78 (41) 4.73 (69) 29.81 (124) > 200
Problem 3r > 200 > 200 > 200 > 200 > 200
Problem 4 0.05 (12) 0.28 (12) 1.04 (11) 4.40 (13) 17.64 (14)
Problem 4u 0.18 (64) 3.14 (179) > 200 > 200 > 200
Problem 4r > 200 > 200 > 200 > 200 > 200

Table 6.1
Standard AMG: Wall-Clock Time in Seconds (and Iteration Count) to Reduce Residuals by

1010. Results marked “> 200” indicate that the residual convergence criterion was not met after
200 iterations.

64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.104 0.115 0.124 0.131 0.137
Problem 1u 0.104 0.115 0.124 0.131 0.137
Problem 1r 0.991 0.997 0.996 0.996 0.996
Problem 2 0.068 0.069 0.070 0.071 0.071
Problem 2u 0.594 0.754 0.864 0.929 0.964
Problem 2r 0.991 0.993 0.993 0.993 0.992
Problem 3 0.111 0.122 0.130 0.136 0.141
Problem 3u 0.488 0.656 0.793 0.886 0.940
Problem 3r 0.995 0.997 0.996 0.996 0.996
Problem 4 0.209 0.212 0.233 0.290 0.375
Problem 4u 0.760 0.914 0.976 0.994 0.998
Problem 4r 0.996 0.996 0.996 0.996 0.995

Table 6.2
Standard AMG: Asymptotic Convergence Factors (Measured After at Most 200 Iterations)

the solver performs optimally. Here, we primarily consider the latter situation, and
demonstrate that doing so does not severely impact the time to solution for a single
right side.

We first present what might best be described as a calibrated AMG approach,
reflecting that parameters ν0 and ν1 are chosen to calibrate the AMG performance,
rather than a truly adaptive approach, where ν0 and ν1 remain fixed and setup is per-
formed until an efficient solver is exposed. Thus, these results indicate the theoretical
best performance of an adaptive AMG algorithm, with the minimal amount of total
setup work, but do not represent a realistic adaptive algorithm, where adaptation is
performed until a termination criterion is met. Such an algorithm is presented in the
following section.

Our experiments were performed with the goal of (approximately) minimizing the
asymptotic convergence factors of the resulting methods. To do this, we computed
the asymptotic convergence factors for very large ν0 and ν1, corresponding to the

20



64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.02 (2,2) 0.09 (2,2) 0.38 (3,3) 1.67 (4,5) 7.21 (7,7)
Problem 1u 0.02 (2,2) 0.09 (2,2) 0.37 (3,3) 1.63 (4,5) 7.27 (7,7)
Problem 1r 0.02 (4,4) 0.11 (5,5) 0.47 (8,7) 2.13 (11,11) 9.52 (16,17)
Problem 2 0.02 (3,2) 0.10 (4,4) 0.42 (6,6) 1.88 (9,9) 8.57 (13,13)
Problem 2u 0.04 (3,2) 0.09 (4,4) 0.43 (7,6) 1.83 (10,9) 8.03 (14,13)
Problem 2r 0.03 (7,7) 0.11 (9,9) 0.51 (14,14) 2.50 (21,21) 11.84 (31,31)
Problem 3 0.02 (2,2) 0.11 (4,4) 0.45 (4,4) 1.69 (6,6) 6.86 (7,7)
Problem 3u 0.02 (2,2) 0.10 (4,4) 0.41 (4,4) 1.66 (6,6) 6.94 (7,7)
Problem 3r 0.03 (5,5) 0.10 (6,6) 0.45 (9,8) 1.90 (10,11) 8.50 (17,16)
Problem 4 0.02 (2,2) 0.06 (3,2) 0.35 (4,4) 1.60 (6,6) 6.80 (8,8)
Problem 4u 0.02 (2,2) 0.09 (3,2) 0.39 (5,5) 1.60 (6,6) 6.98 (9,9)
Problem 4r 0.02 (6,5) 0.12 (9,9) 0.50 (13,14) 2.37 (22,21) 17.09(22,20*)

Table 6.3
Calibrated AMG: Wall-Clock Time in Seconds (and Values of ν0, ν1) for Setup Phase. *

Indicates 2 setup cycles were more efficient

optimal case where x(1) is the slowest-to-converge mode of relaxation, then chose the
smallest values for ν0 and ν1 such that the convergence factor of the resulting method
was within 0.005 of the optimal factor when that factor was less than 0.1, and within
0.01 of the optimal factor otherwise. We found that, for Problems 1, 2, and 3, good
asymptotic convergence factors could be achieved with relatively small values of ν0 and
ν1. For Problem 4, the same performance as standard AMG on the unscaled system
can be recovered with small values of ν0 and ν1. Table 6.3 shows the time required
for the setup phase for given values of these parameters and different grid sizes. As
always happens when measuring computational performance, the timings are accurate
only to within a few hundredths of a second, and so there is some variation in the
timings of program stages that require the same number and ordering of operations.

Table 6.4 presents the asymptotic convergence factors for the methods resulting
from the setup stages as outlined in Table 6.3. Note that, for the first three problems
and for all grid sizes, αAMG achieves convergence factors bounded well below 1, with
very small growth as the mesh size decreases. For Problem 4, we see growth like that
in the standard AMG results. Note also that scaling the matrices has no effect on our
ability to determine an efficient solver for these problems.

Finally, in Table 6.5, we consider the total cost of solving Ax = 0 a single time,
with random initial guess, using the near-optimal solver. Calibrated AMG did not
(and could not be expected to) beat the overall performance of standard AMG on
the four unscaled problems. However, the setup costs of calibrated AMG were not
significantly higher than those of AMG. On a 1024×1024 mesh, AMG setup required
approximately 5 seconds of CPU, and so the adaptive setup needed between 30% and
240% more time, but tended to produce a better solver than classical AMG. For these
reasons, the overall cost of calibrated AMG is close to that of standard AMG in the
cases where standard AMG works well.

When standard AMG fails, there is no contest. Calibrated AMG was able to solve
those problems that caused difficulty for standard AMG in a small fraction of the time.
For the first three randomly scaled problems, the calibrated AMG setup time requires
at most 12 seconds on the 1024 × 1024 grid, equivalent in cost to approximately 15
AMG V-cycles. Yet, the resulting convergence factors of at most 0.108 are much lower
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64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.067 0.073 0.079 0.080 0.079
Problem 1u 0.067 0.073 0.079 0.080 0.079
Problem 1r 0.069 0.078 0.077 0.078 0.079
Problem 2 0.069 0.069 0.071 0.071 0.073
Problem 2u 0.069 0.071 0.071 0.071 0.072
Problem 2r 0.072 0.071 0.071 0.072 0.073
Problem 3 0.070 0.097 0.081 0.110 0.103
Problem 3u 0.072 0.097 0.080 0.109 0.106
Problem 3r 0.070 0.100 0.084 0.111 0.108
Problem 4 0.194 0.202 0.243 0.288 0.376
Problem 4u 0.189 0.212 0.231 0.294 0.374
Problem 4r 0.187 0.212 0.235 0.292 0.383

Table 6.4
Calibrated AMG: Asymptotic Convergence Factors.

64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.04 (8) 0.25 (8) 0.89 (8) 3.52 (8) 14.70 (8)
Problem 1u 0.06 (8) 0.21 (8) 0.90 (8) 3.55 (8) 14.73 (8)
Problem 1r 0.03 (7) 0.22 (7) 0.91 (7) 3.64 (7) 15.64 (7)
Problem 2 0.05 (8) 0.22 (8) 0.92 (8) 3.83 (8) 15.85 (8)
Problem 2u 0.04 (8) 0.24 (8) 0.95 (8) 3.83 (8) 15.94 (8)
Problem 2r 0.05 (7) 0.24 (7) 0.97 (7) 4.23 (7) 18.60 (7)
Problem 3 0.05 (8) 0.20 (8) 0.93 (8) 3.63 (8) 14.58 (8)
Problem 3u 0.03 (8) 0.21 (8) 0.92 (8) 3.66 (8) 14.43 (8)
Problem 3r 0.04 (7) 0.24 (8) 0.94 (8) 3.81 (8) 16.32 (8)
Problem 4 0.03 (11) 0.31 (11) 1.09 (11) 4.84 (13) 22.06 (16)
Problem 4u 0.04 (11) 0.32 (11) 1.10 (11) 4.79 (13) 20.40 (14)
Problem 4r 0.05 (10) 0.27 (10) 1.22 (11) 5.35 (12) 28.27 (12)

Table 6.5
Calibrated AMG: Total Solution Wall-Clock Time in Seconds (and Iteration Count) to Re-

duce Residuals by 1010.

than the AMG convergence factors, the smallest of which was 0.992. Thus, after setup
and a single cycle of the calibrated AMG approach, the error will be smaller than if
the equivalent amount of work, 16 classical AMG cycles, was performed, which would
reduce the error by a factor of approximately 0.879. Even for the fourth randomly
scaled problem, where the setup cost is equivalent to approximately 20 AMG V-
cycles, the error reduction after a single cycle will be significantly better than the
equivalent in cost of 21 classical AMG cycles, which would yield a total reduction of
approximately 0.900.

6.3. Adaptive AMG (αAMG) results. While the calibrated AMG approach
yields solvers with optimal performance characteristics, its results are achieved at a
significant cost of user time in tuning the setup parameters of ν0 and ν1. Details of
this tuning process are documented in [20]. In practice, an adaptive approach may
be used instead, moving the burden of calibration from the user to the solver itself.

In the αAMG approach, a small, fixed number of relaxation sweeps are initially
performed on the finest grid to locally expose algebraically smooth error. This error
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is used to create an interpolation operator and (through the Galerkin conditions) a
coarse-grid problem. Relaxation is then performed on this grid and the problem is fur-
ther coarsened. After the initial multigrid hierarchy is created in this fashion, another
identical setup cycle is performed with the current prototype as an initial guess. This
is done to further improve the prototype as a representative of algebraically smooth
error.

Alternately, we could look for a representative of the error missed by the multigrid
cycle that results from the first setup cycle and use a prototype of this error to further
improve interpolation and generate a more robust solver. Here, however, we consider
problems similar to those for which classical AMG is effective. In particular, we
consider those problems where the near null space can be represented by a single
vector. The question of how to improve an existing AMG interpolation operator with
information from a second prototype vector is not easily addressed. Instead, here we
redefine the interpolation operator based on improving the prototype vector and not
multiple distinct algebraically smooth components.

The results in Tables 6.6, 6.7, and 6.8 reflect performing 8 iterations of Gauss-
Seidel relaxation on the homogeneous problem at each level of the setup phase. After
each setup cycle, the resulting solver is tested by running 8 iterations of the solver on
the homogeneous problem with a random initial guess. The fine-grid multigrid cycle is
accepted when the error reduction factor (measured in the A-norm) of the last of these
iterations is less than 0.4. Performing fewer iterations of relaxation on each level in the
setup phase results in less exposure of slow-to-converge error and typically increases
the number of setup cycles needed. Considering the high cost in recomputation of
the interpolation and coarse-grid operators, we prefer to avoid this. Performing more
iterations of relaxation on the homogeneous problem on each level better exposes
the error sought, but at the cost of potentially significant unnecessary computation.
Another additional cost in the adaptive setup phase is that of the “test drive” that
performs 8 iterations of the current V-cycle on the homogeneous problem (to ensure
adequate performance) after each setup cycle. Here, fewer iterations may give a
poor indication of asymptotic cycle performance, while the cost of more iterations to
better determine the true cycle performance is wasted if the cycle is to be further
improved by another setup phase. Choosing the threshold for accepting the solver is
less ambiguous, as setting a high threshold reduces the setup time but admits poor
solvers, whereas setting the threshold to be small improves the solver but potentially
requires more setup cycles.

Table 6.6 demonstrates the typical higher computational cost of the adaptive
approach as compared to the calibrated approach. Some of this cost is certainly
unavoidable. Fixing the number of iterations performed on the homogeneous problem
undoubtedly results in some extraneous relaxations being performed, particularly on
coarser grids, where few relaxation sweeps are “necessary”. Likewise, the cost of
testing the solver can only be avoided if we know, a priori, whether the solver will be
acceptable. While these costs are significantly higher than those for calibrated AMG
(as in Table 6.3), they do remain relatively low, still under one minute of CPU time
for a 1024× 1024 grid in all but the most difficult case.

Convergence factors for the adaptive AMG approach (Table 6.7) demonstrate its
robustness. While the requirement for a successful setup was a single-step convergence
factor less than 0.4 when measured after 8 iterations, we see that the asymptotic
convergence factors are generally bounded by 0.4 as well. The asymptotic performance
of the cycle for Problem 3r is relatively poor, but, in our tests, the first 15 steps of the
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64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.03 (1) 0.19 (1) 0.79 (1) 3.31 (1) 13.33 (1)
Problem 1u 0.04 (1) 0.20 (1) 0.82 (1) 3.25 (1) 13.41 (1)
Problem 1r 0.04 (1) 0.19 (1) 0.83 (1) 6.30 (2) 25.70 (2)
Problem 2 0.04 (1) 0.20 (1) 0.89 (1) 3.35 (1) 13.59 (1)
Problem 2u 0.04 (1) 0.20 (1) 0.83 (1) 3.37 (1) 13.48 (1)
Problem 2r 0.04 (1) 0.20 (1) 0.84 (1) 6.44 (2) 51.62 (4)
Problem 3 0.04 (1) 0.20 (1) 0.82 (1) 3.36 (1) 13.20 (1)
Problem 3u 0.04 (1) 0.19 (1) 0.82 (1) 3.33 (1) 13.26 (1)
Problem 3r 0.04 (1) 0.21 (1) 0.82 (1) 9.53 (3) 38.57 (3)
Problem 4 0.04 (1) 0.20 (1) 0.84 (1) 3.25 (1) 25.81 (2)
Problem 4u 0.04 (1) 0.19 (1) 0.82 (1) 6.36 (2) 25.67 (2)
Problem 4r 0.04 (1) 0.39 (2) 1.56 (2) 31.06 (10) 229.11 (18)

Table 6.6
Adaptive AMG: Wall-Clock Time in Seconds (and Number of Setup Cycles) for Setup Phase

64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.065 0.069 0.070 0.086 0.201
Problem 1u 0.065 0.069 0.070 0.086 0.201
Problem 1r 0.068 0.085 0.210 0.071 0.071
Problem 2 0.067 0.069 0.089 0.156 0.335
Problem 2u 0.068 0.069 0.091 0.159 0.338
Problem 2r 0.099 0.160 0.355 0.075 0.338
Problem 3 0.067 0.097 0.080 0.118 0.294
Problem 3u 0.068 0.097 0.080 0.121 0.298
Problem 3r 0.075 0.113 0.293 0.110 0.867
Problem 4 0.186 0.195 0.243 0.395 0.384
Problem 4u 0.185 0.195 0.231 0.282 0.382
Problem 4r 0.227 0.202 0.235 0.282 0.385

Table 6.7
Adaptive AMG: Asymptotic Convergence Factors.

resulting method reduced the residuals by factors better than 0.3 at each step. This
example, however, does indicate that a more reliable performance indicator would be
of use. Note that some of the factors are worse than the corresponding convergence
factors for the calibrated AMG approach; they could also be improved at the cost of
more expensive setup cycles. A constant convergence factor of 0.4 is still sufficient,
however, to reduce the error by a factor of 1010 in 25 iterations.

The overall time to solution of the adaptive approach, as in Table 6.8, reflects
the expected behavior. Iteration counts are low - at most 18 iterations are required
for residual reduction by a factor of 1010 - and so the time to solution, ignoring the
setup phase, is quite low. The increased setup costs due to multiple adaptations
are reflected in the total time to solution. Comparing these results to the calibrated
AMG approach is somewhat disappointing; however, in all cases, the solution was still
obtained quickly, with total time for the αAMG approach within a factor of at most
8.5 (and often only 2) of the total time for the calibrated AMG results. Comparing
with the standard AMG results shows that the overall time to solution for the unscaled
problems is higher than that for standard AMG, whereas, for the scaled problems,
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64× 64 128× 128 256× 256 512× 512 1024× 1024
Problem 1 0.06 (8) 0.32 (8) 1.29 (8) 5.15 (8) 23.48 (11)
Problem 1u 0.06 (8) 0.32 (8) 1.29 (8) 5.13 (8) 23.58 (11)
Problem 1r 0.06 (7) 0.30 (7) 1.41 (10) 8.14 (7) 32.38 (7)
Problem 2 0.06 (8) 0.35 (8) 1.37 (8) 5.84 (9) 26.54 (13)
Problem 2u 0.06 (8) 0.34 (8) 1.34 (8) 5.67 (9) 24.58 (11)
Problem 2r 0.07 (8) 0.33 (8) 1.64 (13) 8.33 (7) 64.48 (12)
Problem 3 0.06 (8) 0.33 (8) 1.31 (8) 5.30 (8) 25.92 (13)
Problem 3u 0.06 (8) 0.34 (8) 1.33 (8) 5.31 (8) 25.83 (13)
Problem 3r 0.06 (7) 0.33 (8) 1.61 (13) 11.37 (7) 46.88 (8)
Problem 4 0.07 (11) 0.38 (11) 1.55 (11) 7.69 (18) 38.63 (13)
Problem 4u 0.07 (11) 0.37 (10) 1.53 (11) 9.22 (11) 38.67 (13)
Problem 4r 0.07 (10) 0.55 (10) 2.20 (10) 34.72 (11) 241.56 (13)

Table 6.8
Adaptive AMG: Total Solution Wall-Clock Time in Seconds (and Iteration Count) to Reduce

Residuals by 1010.

adaptive AMG always yields a quickly converging solver and, so, yields lower overall
solution times in all cases where standard AMG performance suffered.

The calibrated and adaptive AMG results are very encouraging. For the scaled
problems, there is a tremendous improvement in the amount of effort required for
solution of the linear systems when compared to the results for standard AMG inter-
polation in Table 6.2. The solution phase of the algorithm scales well across all 5 grid
sizes, and the actual costs are quite reasonable. It must be acknowledged, however,
that once we account for the cost of the setup phase of our algorithm, classical AMG
is still a slightly more efficient solver for the unscaled matrices when we consider
solving with only a single right-hand side. Put simply, if the algebraically smoothest
component of an elliptic PDE is known exactly, αAMG can do no better than design-
ing multigrid interpolation based on that component. Indeed, if this component is
given as input to the adaptive AMG method for creating the multigrid hierarchy, we
can solve the problem with the same cost as classical AMG on the unscaled problem,
simply by using this prototype as x(1) in Equation 4.5, as discussed in Section 4.2.

7. Conclusions. The adaptive multigrid strategies outlined here provide an op-
portunity for the recovery of classical multigrid performance in cases where the near
null space components of the matrix are not locally constant. This can be done in
both the case of a known non-constant near null space component or of an unknown
near null space component. The interpolation presented is a generalization of the
classical Ruge-Stüben scheme and, when coupled with the multilevel prototype of the
near null space it provides a scalable algorithm for matrix systems that the classical
interpolation does not.
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[29] P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Numer. Math., 88 (2001), pp. 559–579.

26
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