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Abstract.

A weighted-norm least-squares method is considered for the numerical approximation of solutions
that have singularities at the boundary. While many methods suffer from a global loss of accuracy
due to boundary singularities, the least-squares method can be particularly sensitive to a loss of
regularity. The method we describe here requires only a rough lower bound on the power of the
singularity and can be applied to a wide range of elliptic equations. Optimal order discretization
accuracy is acheived in weighted H1, and functional norms and L2 accuracy is retained for boundary
vaule problems with a dominant div-curl operator. Our analysis, including interpolation bounds
and several Poincaré type inequalities, are carried out in appropriately weighted Sobolev spaces.
Numerical results confirm the error bounds predicted in the anaylsis.

1. Introduction. Many elliptic boundary value problems have the fortunate
property of a guaranteed smooth solution as long as the data and domain are smooth.
However, many problems of interest are posed in nonsmooth domains and, as a con-
sequence, lose this property at a finite number of points on the boundary in two
dimensions or along curves on the boundary in three dimensions. In this paper, we
study problems that have nonsmooth solutions at irregular boundary points, that is,
points that are corners of polygonal domains, locations of changing boundary condi-
tion type, or both.

Standard solution techniques applied to such boundary value problems suffer
from a global loss of accuracy due to the reduced smoothness of the solution. Several
approaches are used to combat this so-called pollution effect. The most common of
these in practice is systematic local mesh refinement near the singularities. But even
local refinement of finite element subspaces of H1 fails to converge to a solution that
is not in H1.

If a basis for the singular functions is known, it can be incorporated directly
into the finite element space. In [10, 11], this approach is shown to restore optimal
convergence throughout the domain. For some two-dimensional problems, the singular
basis functions are known and can be included in the finite element space. For the
other problems, or in three dimensions, the exact character of the singular functions
is less well understood.

Least-squares methods based on inverse norms can be effective for problems with
discontinuous coefficients and data in H−1. For example, in [8, 12, 17, 20–22], the
functional is posed in terms of H−1 norms rather than L2 norms, resulting in optimal
L2 approximations to the solution. A more recent approach, called FOSLL∗, uses an
inverse norm induced by the equations, and is shown in [14, 19] to be more efficient
than the H−1 norm methods. Other methods for alleviating the pollution effect can
be found in [2, 6, 7, 13, 18].
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We investigate a technique within the first-order system least-squares framework
that requires only the power of the singularity (not the actual singular solution),
recovers optimal order accuracy in the weighted H1, L2 and functional norms, and
retains L2 convergence even near the singularity. In practice, this method can be used
with only a rough estimate of the power of the singularity, which can be adaptively
determined if unknown. In [3] a weighted norm is used in a least-squares functional
in conjunction with a sequence of graded meshes to alleviate the pollution effect. The
method we use in this paper is similar, but our analysis allows for more aggressive
weighting within a wider class of problems. In addition, we prove several Poincaré
type inequalities in weighted Sobolev spaces under different boundary conditions that,
in addition to being necessary for our main result, may be of independent interest.

The basic FOSLS approach is to recast the original system as an appropriate
first-order system and apply an L2 minimization principle over the residual of the
equations. If possible, this reformulation is done by minimizing a functional whose
quadratic part is equivalent to the product H1 norm, indicating that the process is
similar to solving a weakly coupled system of Poisson-like equations. This equivalence
also guarantees optimal H1 accuracy for standard discretizations. For problems with
singular solutions, the L2 based functional fails to be H1 equivalent and, as a conse-
quence, standard discretizations suffer from the pollution effect. The method tries to
approximate a singular solution by minimizing the error in the H1 norm (which it is
not able to do) at the expense of accuracy in the entire domain. The weighted-norm
least-squares method replaces the L2 norms in the FOSLS functional with locally
weighted L2 norms, making the functional norm equivalent to a weighted H1 norm.
With an appropriate weighting function, we then achieve optimal accuracy in this
weighted H1 space and convergence in the L2 measure.

We use Poisson’s equation on a domain with a reentrant corner as a model prob-
lem and as the formal setting for analysis. The resulting div-curl system is a basic
component of the FOSLS formulation of many elliptic problems. The analysis in
this paper is restricted to two dimensions. However, the approach suggests a natural
generalization to three dimensions.

2. Singular solutions and preliminaries. For vector function u = (u1, u2)
t,

let the divergence and curl of u be defined in the standard way: ∇ · u = ∂xu1 + ∂yu2

and ∇× u = ∂xu2 − ∂yu1. Further, define the formal adjoint of the curl operator by

∇⊥q =

(

∂yq
−∂xq

)

.

We use standard notation for Sobolev spaces Hk(Ω)d, corresponding inner product
(·, ·)k,Ω, and norm ‖ ·‖k,Ω, for k ≥ 0. We drop subscript Ω and superscript d when the
domain and dimension are clear by context. Since H0(Ω) coincides with L2(Ω) we
often denote ‖ · ‖0 by ‖ · ‖. Define the subspaces of L2(Ω) induced by the divergence
and curl of u by

H(div) = {u ∈ L2(Ω) : ‖∇ · u‖ <∞},
H(curl) = {u ∈ L2(Ω) : ‖∇ × u‖ <∞}.

We also make use of the following general inequalities for nonnegative a and b:

|a|2 + |b|2 ≤ |a+ b|2 ≤ 2(|a|2 + |b|2). (2.1)
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Consider the function f(r, θ) = ra in two dimensional polar coordinates. Assume
that the origin lies on the boundary of domain

Ωw = {(r, θ) : 0 < r < R, 0 < θ < ω < 2π},

as pictured in figure 2.1. By a direct computation it is clear that f ∈ Hk(Ω) only for
k < a+ 1.

ω

R

Fig. 2.1. Simple wedge-shaped domain, Ωw.

Now, consider Poisson’s equation on a domain in R
2 with a corner of interior angle

ω. It is well known that, for the case of Dirichlet or Neumann boundary conditions,
the solutions of this boundary value problem may include those with radial part of
the form p ∼ r

π

ω in a local polar coordinate system centered at the corner. Thus, for
the case of reentrant corners, ω > π, the solution fails to be in H2(Ω) and we say that
the problem has a singularity (or singular solution). For problems with Dirichlet and
Neumann boundary conditions meeting at the corner, solutions may have components
of the form p ∼ r

π

(2ω) . Thus, for mixed boundary conditions, singularities may occur
at corners with ω > π/2. We now explore this issue in more detail.

Define the power of the singularity to be α = π/ω for Dirichlet or Neumann
boundary conditions and α = π/(2ω) for mixed boundary conditions. The solution
to Poisson’s equation may be written as

p(r, θ) = p0(r, θ) + s(r, θ),

where p0(r, θ) ∈ H2(Ω) and s(r, θ) ∈ H1+m(Ω) for m < α. The singular part of the
solution has the form

s(r, θ) = rα(κ1 sin(αθ) + κ2 cos(αθ)),

where the values of κ1 and κ2 depend on boundary conditions (see [4, 5]).
For the FOSLS formulation of this problem, we may similarly decompose unknown

u = ∇p as

u(r, θ) = u0(r, θ) + ∇s(r, θ),

where ∇s(r, θ) has the form

∇s(r, θ) = αrα−1

(

κ1 sin(α− 1)θ + κ2 cos(α− 1)θ
κ1 cos(α− 1)θ − κ2 sin(α− 1)θ

)

.

Thus, the unknown u(r, θ) is in Hk(Ω) only for k < α.
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For example, consider Poisson’s equation posed on the simple domain in fig-
ure 2.1. Let the solution to this boundary value problem in polar coordinates be
p = χ(r)r

2
3 sin(2θ/3), where χ(r) is a smooth transition function that is 1 on a plat-

form near the origin and vanishes at the boundaries not adjacent to the origin. Then,
p = 0 on ∂Ω and

∆p =
1

r
∂r(r∂rp) +

1

r2
∂2

θθp

=
(

r
2
3χ′′(r) + 7

3r
−1
3 χ′(r)

)

sin(2θ/3),

and, thus, it is clear that ∆p ∈ L2(Ω), but p /∈ H2(Ω). We say this problem fails to
provide full lifting of the data (from L2(Ω) to H2(Ω) e.g.). The solution, u = ∇p, is,
thus, not in H1(Ω).

3. Weighted-norm least squares. As before, let Ω be a domain with a corner
of interior angle ω at the origin, and we may, without loss of generality, further assume
diam(Ω) ≤ 1. For f ∈ L2(Ω), let p satisfy











−∆p = f, in Ω,

p = 0, on ΓD,

n · ∇p = 0, on ΓN ,

(3.1)

where n is the outward unit normal to Ω and ∂Ω = Γ̄D ∪ Γ̄N . When this problem
is H2 regular, the normal FOSLS methodology is to introduce the new unknown,
u = ∇p, and rewrite system (3.1) as



















































u −∇p = 0, in Ω,

−∇ · u = f, in Ω,

∇× u = 0, in Ω,

τ · u = 0, on ΓD,

n · u = 0, on ΓN ,

p = 0, on ΓD,

n · ∇p = 0, on ΓN .

(3.2)

Here, τ is the counter-clockwise unit tangental vector to Ω. Since this system can be
posed completely in terms of u, we may decouple the equations in (3.2), solve for u
first, and then recover p from u. To this end, define the two L2-norm functionals,

G(u; f) = ‖∇ · u + f‖2 + ‖∇ × u‖2,

G2(p;u) = ‖u −∇p‖2,

and the spaces,

V = {v ∈ H1(Ω) : τ · v = 0 on ΓD, n · v = 0 on ΓN},
W = {q ∈ H1(Ω) : q = 0 on ΓD}.

Thus, the two-stage solution process is to minimize G(u; f) over V and then, given
the approximation to u, minimize G2 over W:

(1) G(u; f) = inf
v∈V

G(v; f),

(2) G2(p;u) = inf
q∈W

G2(q;u).
(3.3)
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The goal of the FOSLS methodology is, generally, to formulate functionals whose
quadratic part is equivalent to the H1 norm whenever possible. The second stage
functional is H1 equivalent and the solution we seek is always in H1. The first stage
functional, however, is not always H1 equivalent. For domains with reentrant corners,
there is no H1 sequence of functions that converges to the solution in the H(div) ∩
H(curl) norm. To illustrate, consider the example above where p = χ(r)r

2
3 sin(2θ/3)

and u = ∇p. A simple computation reveals that ∇·u,∇×u ∈ L2(Ω), but u /∈ H1(Ω).
Define the weighted functional by

Gw(u; f) = ‖w(∇ · u + f)‖2 + ‖w∇× u‖2, (3.4)

where the weight function has the form w = rβ for some β > 0.
Define the weighted Sobolev norm, ‖ · ‖k,β , on Ω in terms of the standard L2

norm, ‖ · ‖0, by

‖q‖k,β = (
∑

|j|≤k

‖rβ−k+jDjq‖2
0)

1/2, (3.5)

where Dj is the standard distributional derivative of order j. Similarly, define the
weighted seminorm by

|q|k,β = (
∑

|j|=k

‖rβ−k+jDjq‖2
0)

1/2 (3.6)

and the associated weighted Sobolev space by

Hk
β (Ω) = {q : ‖q‖k,β <∞}. (3.7)

Define the div-curl operator, L, and vector f by L =

(

∇·
∇×

)

and f =

(

f
0

)

. We

may now write the weighted functional from (3.4) as

Gw(u; f) = ‖Lu − f‖2
0,β .

The weighted-norm least-squares minimization problem for the first-stage solution is
then: find u ∈ V such that

Gw(u; f) = inf
v∈V

Gw(v; f).

The second-stage solution for p remains as described above. We seek values of β that
make H1(Ω) dense in H(div) ∩ H(curl) in the weighted functional norm and result
in the most accurate discretizations possible.

For the discrete problem, we may choose any finite dimensional subset of H1 over
which to minimize the weighted functional. Let Ph denote the space of C0 piecewise
polynomial (or tensor product) elements on triangles (or quadrilaterals) of meshsize
h and Vh the subspace of Ph that satisfies the appropriate boundary conditions on
Ω:

Vh = {vh ∈ Ph : τ · vh = 0 on ΓD, n · vh = 0 on ΓN}.

The discrete weighted-norm least-squares minimization problem is, then, to minimize
the discrete functional: find uh ∈ Vh such that

Gw(uh; f) = min
v

h∈Vh

Gw(vh; f). (3.8)
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By unweighting the equations near the singularity, the functional is freed from
trying to approximate the solution (which is not in H1(Ω)) in the H1 sense near
the singularity. But, away from the singularity, the weighted functional retains the
same character as the normal non-weighted functional. We now consider the choice
of weight parameter β and its relation to weighted and nonweighted a priori error
bounds on the approximated solution.

4. Theory and error bounds. In this section, we establish several theoretical
results in weighted Sobolev spaces and error bounds for the weighted-norm method.

Here, we establish several Poincaré bounds in the domain Ωw. We first prove
a result for the scalar pure Neumann and pure Dirichlet problems, and then for the
scalar mixed boundary condition problem. These results lead to a Poincaré inequality
for the vector case.

Lemma 4.1 Take Ω = Ωw and let β > 0, ε > 0 and γ = β−3/2−ε. Further, assume

that γ 6= −2. If q is a scalar function in Ω that can be chosen to satisfy

∫∫

Ω

rγ q(r, θ) r dr dθ = 0, (4.1)

then

‖q‖0,β−1 ≤ C(ε)‖∇q‖0,β−ε, (4.2)

where C(ε) depends on ε, β, and Ω and C(ε) → ∞ as ε→ 0.

Proof. For any two points (r, θ) and (r0, θ0) in Ω, write q(r, θ) as

q(r, θ) = q(r0, θ0) +

∫ r

r0

∂q(r̂, θ)

∂r̂
dr̂ +

∫ θ

θ0

∂q(r0, θ̂)

∂θ̂
dθ̂.

Multiply both sides of the equation by rγ+1
0 and integrate with respect to r0 and θ0

over Ω,

Rγ+2ω

γ + 2
q(r, θ)

=

∫ ω

0

∫ R

0

∫ r

r0

rγ+1
0

∂q(r̂, θ)

∂r̂
dr̂ dr0 dθ0 +

∫ ω

0

∫ R

0

∫ θ

θ0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0 dθ0

= ω

∫ r

0

∫ r̂

0

rγ+1
0

∂q(r̂, θ)

∂r̂
dr0 dr̂ − ω

∫ R

r

∫ R

r̂

rγ+1
0

∂q(r̂, θ)

∂r̂
dr0 dr̂

+

∫ R

0

∫ θ

0

∫ θ̂

0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ0 dθ̂ dr0 −

∫ R

0

∫ ω

θ

∫ ω

θ̂

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ0 dθ̂ dr0

=
ω

γ + 2

∫ R

0

r̂γ+2 ∂q(r̂, θ)

∂r̂
dr̂ − ωRγ+2

γ + 2

∫ R

r

∂q(r̂, θ)

∂r̂
dr̂

+

∫ R

0

∫ ω

0

θ̂ rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0 − ω

∫ R

0

∫ ω

0

rγ+1
0

∂q(r0, θ̂)

∂θ̂
dθ̂ dr0.
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By the triangle inequality we have that

∣

∣

∣

∣

Rγ+2ω

γ + 2
q(r, θ)

∣

∣

∣

∣

≤ ω

γ + 2

∫ R

0

r̂γ+2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂ +
ωRγ+2

γ + 2

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

+ 2ω

∫ R

0

∫ ω

0

rγ+1
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

dθ̂ dr0.

Now, squaring each side and using (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we get,

|q(r, θ)|2 ≤ 3

R2(γ+2)

(

∫ R

0

r̂γ+2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

+ 3

(

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

+
12(γ + 2)2

R2(γ+2)

(

∫ R

0

∫ ω

0

rγ+1
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

dθ̂ dr0

)2

.

(4.3)

Multiply each side of (4.3) by r2β−1 and integrate with respect to r and θ over Ω. We
consider each of the terms on the resulting right-hand side separately. First,

∫ ω

0

∫ R

0

r2β−1

(

∫ R

0

r̂γ+2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

dr dθ

≤ R

∫ ω

0

∫ R

0

∫ R

0

r2β−1 r̂2γ+4

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dr dθ

=
R2β+1

2β

∫ ω

0

∫ R

0

r̂2γ+3

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

r̂ dr̂ dθ

≤ R2β+1

2β
‖∇q‖2

0,γ+ 3
2
.

We now consider the second term in (4.3). Since by the Schwarz inequality,

(

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

=

(

∫ R

r

r̂(ε−1)/2r̂(1−ε)/2

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

≤
∫ R

r

r̂ε−1 dr̂

∫ R

r

r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂

=
Rε

ε

∫ R

r

r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂,
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we can bound the second term:

∫ ω

0

∫ R

0

r2β−1

(

∫ R

r

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

dr̂

)2

dr dθ

≤ Rε

ε

∫ ω

0

∫ R

0

∫ R

r

r2β−1 r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dr dθ

=
Rε

ε

∫ ω

0

∫ R

0

∫ r̂

0

r2β−1 r̂1−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr dr̂ dθ

=
Rε

2εβ

∫ ω

0

∫ R

0

r̂2β−ε

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

r̂ dr̂ dθ

=
Rε

2εβ
‖∇q‖2

0,β− ε

2

≤ Rε

2εβ
‖∇q‖2

0,β−ε.

The third term can be bounded similarly:

∫ ω

0

∫ R

0

r2β−1

(

∫ R

0

∫ ω

0

rγ+1
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

dθ̂ dr0

)2

dr dθ

≤
(

∫ R

0

∫ ω

0

r2β−1 dr dθ

)

Rω

∫ ω

0

∫ R

0

r2γ+2
0

∣

∣

∣

∣

∣

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dr0 dθ̂

=
R2β+1ω2

2β

∫ ω

0

∫ R

0

r2γ+3
0

∣

∣

∣

∣

∣

1

r0

∂q(r0, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

r0 dr0 dθ̂

=
R2β+1ω2

2β
‖∇q‖2

0,γ+ 3
2
.

Putting the three terms together and substituting γ = β − 3/2− ε we may now write
the bound

∫ ω

0

∫ R

0

r2β−2 |q(r, θ)|2 r dr dθ

≤
(

3R−2ε

2β
+

3Rε

2εβ
+

6(β + 1
2 − ε)2R−2εω2

β

)

‖∇q‖2
0,β−ε,

and the lemma follows by taking the square root of both sides.
In what follows, let χ be a smooth function of r where χ = 1 for r < η and χ = 0

for r > 2η. We take η to be sufficiently small to ensure that supp(χ) ⊂ Ω.

Lemma 4.2 Take Ω = Ωw and let q be a scalar function in H1
β(Ω), where β > 0.

The following bound holds for χ as defined above:

‖χq‖0,β−1 ≤ 1

β
‖∇(χq)‖0,β . (4.4)

Proof. Hardy’s inequality for f(t) defined for t > 0 with lim
t→0

f(t) = 0 gives (see [9]):

∫ ∞

0

f2

t2
dt ≤ 4

∫ ∞

0

|f ′|2 dt. (4.5)
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The lemma follows after a change of variables, t = r−2β , a substitution f(r) = χq(r, θ)
for fixed θ, and an integration on both sides with respect to θ.

Lemma 4.3 Take Ω = Ωw and let either q ∈ H1
β(Ω) with q = 0 on ∂Ω or q ∈

H1
β(Ω)/R with n · ∇q = 0 on ∂Ω. Then

‖q‖0,β−1 ≤ C‖∇q‖0,β (4.6)

for β > 0 where C depends only on Ω, and β.

Proof. First, if q = 0 on ∂Ω, write q = q(r, θ) as

q(r, θ) =

∫ θ

0

∂q(r, θ̂)

∂θ̂
dθ̂.

Square both sides and multiply by r2β−1:

r2β−1 |q(r, θ)|2 = r2β−1

∣

∣

∣

∣

∣

∫ θ

0

∂q(r, θ̂)

∂θ̂
dθ̂

∣

∣

∣

∣

∣

2

≤ r2β+1ω

∫ ω

0

∣

∣

∣

∣

∣

1

r

∂q(r, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂.

Integrate both sides with respect to r and θ over Ω:

∫ ω

0

∫ R

0

r2β−2 |q(r, θ)|2 r dr dθ ≤ ω

∫ ω

0

∫ R0

0

r2β+1

∫ ω

0

∣

∣

∣

∣

∣

1

r

∂q(r, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂ dr dθ

≤ ω2

∫ R0

0

∫ ω

0

r2β

∣

∣

∣

∣

∣

1

r

∂q(r, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

r dθ̂ dr.

The lemma follows since the right side is bounded by C‖∇q‖2
0,β .

Now, if q ∈ H1
β(Ω)/R then it may be chosen to satisfy

∫∫

Ω

rγ q r dr dθ = 0 (4.7)

for γ chosen as in lemma 4.1. By the triangle inequality and lemma 4.2 we get

‖q‖0,β−1 ≤ ‖χ q‖0,β−1 + ‖(1 − χ)q‖0,β−1

≤ C‖∇(χq)‖0,β +

(

∫ ω

0

∫ R

η

(

r

η

)2

r2β−2(1 − χ)2 q2 r dr dθ

)
1
2

≤ C (‖∇(q)‖0,β + ‖q‖0,β) .

Apply lemma 4.1 with ε = 1 to the ‖q‖0,β term on the right side and the lemma
follows.

For the problem with mixed boundary conditions, consider Ωw partioned into
subdomains Ω0 = {(r, θ) : r ≤ 1

2R0, 0 ≤ θ ≤ ω} and Ω1 = Ω\Ω0, as shown in
figure 4.1.
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Ω0

1
2
R0

Ω1

R0 R

Fig. 4.1. Wedge-shaped domain, Ωw, partioned into subdomains Ω0 and Ω1.

Lemma 4.4 Consider domain Ω = Ωw, as pictured in figure 4.1, and let q ∈ H1
β(Ω)

vanish on the line segment of ∂Ω corresponding to θ = 0 and r < R0. Then, there is

a constant, C, dependent only on Ω, β, and R0, such that

‖q‖0,β−1 ≤ C‖∇q‖0,β (4.8)

for β > 0.

Proof. For points (r, θ) in Ω0 we may derive the bound,

‖q‖0,β−1,Ω0
≤ C‖∇q‖0,β,Ω0

, (4.9)

completely analogous to the proof of lemma 4.3. Now, consider points (r, θ) in Ω1.
We may write q = q(r, θ) as

q(r, θ) =

∫ r

r̃

∂q(r̂, θ)

∂r̂
dr̂ +

∫ θ

0

∂q(r̃, θ̂)

∂θ̂
dθ̂,

where the point (r̃, 0) is on the part of ∂Ω1 where q vanishes. By the Schwarz in-
equality, the triangle inequality and inequality (2.1) we have the bound

|q(r, θ)|2 ≤ 2(R− 1

2
R0)

∫ r

r̃

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ + 2ω

∫ θ

0

∣

∣

∣

∣

∣

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂. (4.10)

We now expand the limits in the integrals, multiply each side by r2β−1, integrate with
respect to r over ( 1

2R0, R), integrate with respect to θ over (0, ω), and integrate with
respect to r̃ over ( 1

2R0, R0):

(
1

2
R0)

∫ ω

0

∫ R

1
2 R0

r2β−1|q(r, θ)|2 dr dθ

≤ 2(R− 1

2
R0)

∫ R0

1
2 R0

∫ ω

0

∫ R

1
2 R0

∫ R

1
2 R0

r2β−1

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dr dθ dr̃

+ 2ω

∫ R0

1
2 R0

∫ ω

0

∫ R

1
2 R0

∫ θ

0

∣

∣

∣

∣

∣

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂ dr dθ dr̃.

(4.11)
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We use the inequalities,

1

2
R0 ≤ r̃ ≤ R0, r̃ ≤ r̂ ≤ r ≤ R,

to derive the following simple bounds:

1 ≤
(

2r̂

R0

)

, r ≤
(

2R

R0

)

r̂, r ≤
(

2R

R0

)

r̃. (4.12)

By applying the bounds in (4.12) we may now write (4.11) as

(
1

2
R0)

∫ ω

0

∫ R

1
2 R0

r2β−2|q(r, θ)|2r dr dθ

≤ (R− 1

2
R0)

2R0

∫ ω

0

∫ R

1
2 R0

(

2r̂

R0

)2(
2R

R0

)2β−1

r̂2β−1

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

dr̂ dθ

+ 2ω2(R− 1

2
R0)

∫ R0

1
2 R0

∫ ω

0

(

2R

R0

)2β−1

r̃2β−1

∣

∣

∣

∣

∣

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

dθ̂ dr̃

≤ 22β+1(R− 1

2
R0)

2R−2β
0 R2β−1

∫ ω

0

∫ R

1
2 R0

r̂2β

∣

∣

∣

∣

∂q(r̂, θ)

∂r̂

∣

∣

∣

∣

2

r̂ dr̂ dθ

+ 22βω2(R− 1

2
R0)

(

R

R0

)2β−1 ∫ R

1
2 R0

∫ ω

0

r̃2β

∣

∣

∣

∣

∣

1

r̃

∂q(r̃, θ̂)

∂θ̂

∣

∣

∣

∣

∣

2

r̃ dθ̂ dr̃,

which directly implies

‖q‖0,β−1,Ω1
≤ C‖∇q‖0,β,Ω1

, (4.13)

where

C = 22β+1(R− 1

2
R0)R

2β−1R−2β−1
0

(

2(R− 1

2
R0) +

ω2

R0

)

.

Combining inequalities (4.9) and (4.13) completes the lemma.

We now consider a similar Poincaré inequality for the vector case. Again, consider
Ω = Ωw, where ∂Ω is partioned into Dirichlet and Neumann boundaries, ΓD and ΓN

respectively. The following lemma is valid for the pure Dirichlet and Neumann cases
and for the mixed boundary condition cases when ΓD includes a part of the boundary
adjacent to the origin and ω 6= 3π

2 .

Lemma 4.5 Take Ω = Ωw and let u ∈ H1
β(Ω)2 satisfy τ ·u = 0 on ΓD and n ·u = 0

on ΓN . Assume that for the mixed boundary condition case that ω 6= 3π/2. Then

there is a constant, C, dependent only on Ω, β and the length of the segments of ΓD

and ΓN adjacent to the origin, such that

‖u‖0,β−1 ≤ C‖∇u‖0,β (4.14)

for β > 0.
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Proof. First, consider the case when τ · u = 0 on ∂Ω. Denote the part of ∂Ω
aligned with θ = 0 as Γ1 and the part of ∂Ω aligned with θ = ω as Γ2. Thus, u1 = 0
on Γ1 and τxu1 + τyu2 = 0 on Γ2. Since u1 and τxu1 + τyu2 satisfy the conditions in
lemma 4.4, we may use

‖u1‖0,β−1 ≤ C‖∇u1‖0,β

and

‖τxu1 + τyu2‖0,β−1 ≤ C‖∇(τxu1 + τyu2)‖0,β .

Further, take τy 6= 0, since τy = 0 corresponds to either ω = π, for which the result
holds trivially since the boundary is smooth, or ω = 2π, which we do not consider.
Now,

‖u‖2
0,β−1 = ‖u1‖2

0,β−1 + ‖u2‖2
0,β−1

= ‖u1‖2
0,β−1 +

1

τ2
y

‖τxu1 − τxu1 + τyu2‖2
0,β−1

≤ (1 + 2
τ2
x

τ2
y

)‖u1‖2
0,β−1 +

2

τ2
y

‖τxu1 + τyu2‖2
0,β−1

≤ C(‖∇u1‖2
0,β + ‖∇(τxu1 + τyu2)‖2

0,β)

≤ C‖∇u‖2
0,β .

The case when n·u = 0 on ∂Ω is analogous since u2 = 0 on Γ1 and nxu1+nyu2 = 0 on
Γ2. Also, when ω 6= π

2 ,
3π
2 , the case for mixed boundary conditions follows similarly

using the result of lemma 4.4. The case for mixed boundary conditions when ω = π/2,
follows from appealing to symmetry in the the pure Dirichlet problem for ω = π.

Remark 4.6 Lemma 4.5 can be directly extended to more generally shaped domains.

The proof of the scalar Poincaré bounds in lemmas 4.1, 4.2, 4.3 and 4.4 are simplified

when the domain has the shape of Ωw with only one irregular boundary point. Since

we are primarily interested in a local result, proving lemma 4.5 in the simple domain

is sufficient for our purposes.

Let T h = ∪N
i=1τi be a quasi-uniform tesselation of polygonal domain Ω. Let Ih

represent standard interpolation onto a piecewise polynomial finite element space of
degree k. From finite element theory, we have the following interpolation bounds.

Lemma 4.7 Let Ω be a polygonal domain. There exists a constant, C, independent

of v, such that, for all v ∈ Hm(Ω),

‖v − Ihv‖s ≤ Chm−s|v|m (4.15)

for 0 ≤ s ≤ m. When τi are triangles, Ih denotes interpolation by a piecewise

polynomial of degree k, and m ≤ k + 1. When τi are quadrilaterals, m ≤ 2 and Ih

denotes bilinear interpolation.

Proof. See [1].
We now consider a weighted interpolation bound for functions on domains with

a polygonal corner at the origin. Define the modified interpolation operator, Ih
0 , by

Ih
0 u|τ =

{

Ihu =
∑n

i=0 u(ai)φi , if τ does not intersect the origin,
∑n

i=1 u(ai)φi , if τ intersects the origin,
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where Ih is a standard polynomial interpolation operator, φi are basis functions
corresponding to the n + 1 nodal points, ai, and a0 is the origin, (0, 0). Thus, the
modified interpolation has a value of zero at the origin and resembles Ih away from
the origin.

Lemma 4.8 Let Ω be a polygonal domain. There exists a constant, C, independent

of u, such that, for all u ∈ Hm
β (Ω) satisfying equation (4.8),

‖u− Ih
0 u‖1,β ≤ Chm−1‖u‖m,β , (4.16)

for 1 ≤ m ≤ k + 1 and β > 0, where Ih
0 is the modified interpolation operator onto

piecewise polynomials of degree k defined above.

Proof. We rewrite

‖u− Ih
0 u‖2

1,β =
∑

τ∈Th

‖u− Ih
0 u‖2

1,β,τ

and consider ‖u − Ih
0 u‖2

1,β,τ on each element τ . Define K0 = {τ | τ̄ ∩ (0, 0) 6= ∅}
as the set of elements adjacent to the origin. On T h\K0, we have h ≤ rmin ≤
r =

√

x2 + y2 ≤ rmax ≤ rmin +
√

2h with rmin = inf{r|(x, y) ∈ τ} and rmax =
sup{r|(x, y) ∈ τ} in τ , and

‖u− Ih
0 u‖2

1,β,τ = ‖u− Ihu‖2
1,β,τ

=

∫

τ

r2β |∇(u− Ihu)|2 + r2(β−1)|u− Ihu|2dτ

≤ r2β
max

∫

τ

|∇(u− Ihu)|2dτ + r2β
maxr

−2
min

∫

τ

|u− Ihu|2dτ

≤ Cr2β
maxh

2(m−1)|u|2m,0,τ + Cr2β
maxr

−2
minh

2m|u|2m,0,τ

= Cr2β
maxh

2(m−1)(1 + r−2
minh

2)|u|2m,0,τ ≤ Cr2β
maxh

2(m−1)|u|2m,0,τ

≤ Ch2(m−1)r2β
maxr

−2β
min

∫

τ

r2β |Dmu|2dτ

≤ Ch2(m−1)

(

rmin +
√

2h

rmin

)2β
∫

τ

r2β |Dmu|2dτ

≤ Ch2(m−1)

∫

τ

r2β |Dmu|2dτ.

We now consider the case for which τ ∈ K0. Let δ ∈ C∞ be a cut-off function
defined by

δ(r) =

{

1, if r ≤ h/3,
0, if r > 2h/3,

with |δ(m)| ≤ ch−m, where δ(m) is the mth derivative of δ. By the triangle inequality,

‖u− Ih
0 u‖1,β,τ ≤ ‖δu− Ih

0 (δu)‖1,β,τ + ‖(1 − δ)u− Ih
0 ((1 − δ)u)‖1,β,τ . (4.17)
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By the definition of δ we have Ih
0 ((1 − δ)u) = Ih((1 − δ)u) and Ih

0 (δu) = 0. For the
second term in (4.17), we apply lemmas 4.4 and 4.7, and the properties in δ to obtain

‖(1 − δ)u− Ih
0 ((1 − δ)u)‖2

1,β,τ = ‖(1 − δ)u− Ih((1 − δ)u)‖2
1,β,τ

≤ C‖∇((1 − δ)u− Ih((1 − δ)u))‖2
0,β,τ ≤ Ch2β

∫

τ

|∇((1 − δ)u− Ih((1 − δ)u))|2dτ

≤ Ch2βh2(m−1)

∫

τ

|Dm((1 − δ)u)|2dτ ≤ Ch2(β+m−1)

∫

τ

m
∑

j=0

|Dm−j(1 − δ)Dju|2dτ

≤ Ch2(β+m−1)





∫ ∫ 2h

3

h

3

m−1
∑

j=0

|hj−mDju|2dτ +

∫ ∫ r(θ)

h

3

|(1 − δ)Dmu|2dτ





≤ Ch2(β+m−1)





m−1
∑

j=0

∫ ∫ 2h

3

h

3

h−2βr2(β+j−m)|Dju|2dτ +

∫ ∫ r(θ)

h

3

h−2βr2β |Dmu|2dτ





= Ch2(m−1)
m
∑

j=0

∫

τ

r2(β+j−m)|Dju|2dτ = Ch2(m−1)‖u‖2
m,β,τ .

Using the properties of δ results in a similar bound for the first term in (4.17):

‖δu− Ih
0 (δu)‖2

1,β,τ = ‖δu‖2
1,β,τ =

∫

τ

r2β |∇(δu)|2 + r2(β−1)|δu|2dτ

≤ C

∫

τ

r2β(|∇δ · u|2 + |δ∇u|2) + r2(β−1)|δu|2dτ

≤ C

∫ ∫ 2h

3

h

3

r2βh−2|u|2dτ + C

∫ ∫ 2h

3

0

r2β |∇u|2 + r2(β−1)|u|2dτ

≤ C

∫ ∫ 2h

3

h

3

r2(β−1)|u|2dτ + C

∫ ∫ 2h

3

0

r2β |∇u|2 + r2(β−1)|u|2dτ

≤ C

∫

τ

r2(m−1)(r2(β−m+1)|∇u|2 + r2(β−m)|u|2)dτ ≤ Ch2(m−1)‖u‖2
m,β,τ .

Thus we have

‖u− Ih
0 u‖2

1,β =
∑

τ∈Th

‖u− Ih
0 u‖2

1,β,τ ≤ Ch2(m−1)
∑

τ∈Th

‖u‖2
m,β,τ ≤ Ch2(m−1)‖u‖2

m,β ,

and the lemma follows.

Lemma 4.9 Assume equation (4.14) holds in Ω. Then, for all uh ∈ Vh,

‖uh‖0,β ≤ Ch−η‖uh‖0,β+η (4.18)

for any real β and any η > 0.

Proof. Using lemma 4.5 and an inverse inequality, we may write

‖uh‖0,β ≤ C‖∇uh‖0,β+1 ≤ Ch−1‖uh‖0,β+1,
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which establishes (4.18) for η = 1. Repeated application of this inequality thus
validates (4.18) for any positive integer. Now consider

‖uh‖2
0,β = 〈rβuh, rβuh〉 = 〈rβ−1/2uh, rβ+1/2uh〉

≤ ‖uh‖
0,β−1/2

‖uh‖
0,β+1/2

≤ Ch−1‖uh‖2

0,β+1/2
.

Taking the square root establishes (4.18) for η = 1/2. Repeating these steps leads
to (4.18) for all η = ηn = kn/2

`n for any nonnegative integers kn and `n. For any
η > 0, choose a monotonically decreasing sequence, {ηn}, such that ηn > η and
limn→∞|ηn − η| = 0. Now, gn = (rβ+ηnuh)2 is a monotonically increasing function
that converges to g = (rβ+ηuh)2 pointwise everywhere. Thus, by the Lebesgue mono-
tone convergence theorem, we have

‖uh‖2
0,β+η =

∫

gdx = lim
n

∫

gndx = lim
n

‖uh‖2
0,β+ηn

and, therefore,

‖uh‖0,β = lim
n

‖uh‖0,β

≤ lim
n
Ch−ηn‖uh‖0,β+ηn

= (lim
n
Ch−ηn)(lim

n
‖uh‖0,β+ηn

)

= Ch−η‖uh‖0,β+η,

which completes the proof.
Consider the following scalar Poisson problem in Ωw:











∆p = f, in Ω,

p = 0, on ΓD,

n · ∇p = 0, on ΓN .

(4.19)

We refer to system (4.19) as the pure Dirichlet problem when ∂Ω = ΓD; the
pure Neumann problem when ∂Ω = ΓN ; and the mixed boundary condition problem
when ΓD includes the part of ∂Ω coinciding with one of either θ = 0 or θ = ω, and
ΓN = ∂Ω\ΓD with ΓN 6= ∅.

The following regularity results can be found in [16] and [15].

Lemma 4.10 Assume |1−β| < π/ω for the pure Dirichlet problem, 0 < |1−β| < π/ω
for the pure Neumann problem and |1 − β| < π/2ω for the mixed boundary condition

problem. Then, for every f ∈ H0
β(Ω), there exists a unique solution to (4.19), p ∈

H2
β(Ω) for the pure Dirichlet and mixed boundary condition cases and p ∈ H2

β(Ω)/R
for the pure Neumann problem. Moreover, there exists a constant, C, independent of

p, such that

‖p‖2,β ≤ C‖f‖0,β . (4.20)

Proof. See Chapter 1 of [16] for the Dirichlet and Neumann problems and Chapter
2 of [15] for the mixed boundary problem.

Define the subspace of functions in H1
β(Ω) satisfying the appropriate boundary

conditions by

Vβ = {v ∈ H1
β(Ω) : τ · v = 0 on ΓD, n · v = 0 on ΓN}.
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We now prove a regularity result for functions in Vβ . Recall that the power of the
singularity is defined as α = π/ω for Dirichlet or Neumann boundary conditions and
α = π/(2ω) for mixed boundary conditions.

Lemma 4.11 Consider domain Ω = Ωw. Then there is a positive constant, C, inde-

pendent of u, such that, for |1 − β| < α, the following bound holds for all u ∈ Vβ:

‖u‖1,β ≤ C‖Lu‖0,β . (4.21)

Proof. From lemmma 4.10 we know that any u ∈ Vβ has the decomposition

u = ∇φ+ ∇⊥ψ, (4.22)

where φ, ψ ∈ H2
β(Ω) satisfy

{

∆φ = ∇ · u, in Ω,

φ = 0, on ∂Ω,
(4.23)

and
{

∆ψ = ∇× u, in Ω,

n · ∇ψ = 0, on ∂Ω.
(4.24)

Then, by applying lemma 4.10 to problems (4.23) and (4.24) we have

‖u‖1,β = ‖∇φ+ ∇⊥ψ‖1,β ≤ ‖∇φ‖1,β + ‖∇⊥ψ‖1,β

≤ ‖φ‖2,β + ‖ψ‖2,β ≤ C(‖∇ · u‖0,β + ‖∇ × u‖0,β) ≤ C‖Lu‖0,β ,

which completes the proof.
Define an irregular boundary point of polygonal domain Ω to be a point on ∂Ω

where interior angle ω satisfies ω > π when Dirichlet or Neumann boundary conditions
are applied on both sides of the point or ω > π/2 when one Dirichlet boundary and
a Neumann boundary meet at the corner. We now present error bounds for the
numerical solution in weighted and unweighted norms.

Theorem 4.12 Let Ω be a polygonal domain with one irregular boundary point of

interior angle ω and let f ∈ L2(Ω). Suppose u ∈ V satisfies Lu = f . If uh ∈ Vh is

chosen to minimize the weighted functional,

Gw(uh; f) = ‖Luh − f‖2
0,β = inf

v
h∈Vh

‖Lvh − f‖2
0,β ,

for |1 − β| < α, then the approximation error, u − uh, satisfies the following bounds:

‖u − uh‖1,β ≤ Chα+β−1‖u‖α+β,β , (4.25)

Gw(u − uh;0)
1/2 ≤ Chα+β−1‖u‖α+β,β , (4.26)

‖u − uh‖0 ≤ Chα(|u|α + ‖u‖α+β,β + ‖u‖α−β+2,2−β), (4.27)

for α+ β ≤ k + 1, where k is the degree of the piecewise polynomial elements in Vh.
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Proof. By lemmas 4.11 and 4.8, we have

‖u − uh‖1,β ≤ C‖L(u − uh)‖0,β ≤ C‖L(u − Ih
0 u)‖0,β

≤ C‖u − Ih
0 u‖1,β ≤ Chα+β−1‖u‖α+β,β ,

which establishes both (4.25) and (4.26) since we may write

‖L(u − uh)‖0,β = Gw(u − uh;0)
1/2.

Note that lemmas 4.11 and lemma 4.8 are satisfied for |1−β| < α and α+β ≤ 2. We
also have

‖uh − Ih
0 u‖1,β ≤ ‖u − uh‖1,β + ‖u − Ih

0 u‖1,β ≤ Chα+β−1‖u‖α+β,β . (4.28)

We now consider the bound on ‖u − uh‖0. Let K0 = {τ | τ̄ ∩ (0, 0) 6= ∅} and
K1 = T h\K0. We may write

‖u − uh‖2
0 =

∑

τ∈K0

‖u − uh‖2
0,0,τ +

∑

τ∈K1

‖u − uh‖2
0,0,τ .

When τ ∈ K1, we have Ih
0 = Ih and, for β ≥ 1, we apply the triangle inequality

and lemmas 4.7, 4.9 and 4.5 to get

‖u − uh‖0,0,τ ≤ ‖u − Ihu‖0,0,τ + ‖uh − Ihu‖0,0,τ

≤ C(hα|u|α,τ + h1−β‖uh − Ihu‖0,β−1,τ )

≤ C(hα|u|α,τ + h1−β‖uh − Ihu‖1,β,τ ).

(4.29)

Similarly, if β < 1 we have

‖u − uh‖0,0,τ ≤ ‖u − Ihu‖0,0,τ + ‖uh − Ihu‖0,0,τ

≤ C(hα|u|α,0,τ + hβ−1‖uh − Ihu‖0,1−β,τ )

≤ C(hα|u|α,0,τ + hβ−1‖uh − Ihu‖1,2−β,τ ).

(4.30)

When τ ∈ K0, we have r ≤ Ch and for β ≥ 1 we apply the triangle inequality
and lemmas 4.9 and 4.5 to get

‖u − uh‖0,0,τ ≤ ‖u − Ih
0 u‖0,0,τ + ‖uh − Ih

0 u‖0,0,τ

≤ C(hβ−1‖u − Ih
0 u‖0,1−β,τ + h1−β‖uh − Ih

0 u‖0,β−1,τ )

≤ C(hβ−1‖u − Ih
0 u‖1,2−β,τ + h1−β‖uh − Ih

0 u‖1,β,τ )

(4.31)

Similarly, if β < 1 we have

‖u − uh‖0,0,τ ≤ ‖u − Ih
0 u‖0,0,τ + ‖uh − Ih

0 u‖0,0,τ

≤ C(h1−β‖u − Ih
0 u‖0,β−1,τ + hβ−1‖uh − Ih

0 u‖0,1−β,τ )

≤ C(h1−β‖u − Ih
0 u‖1,β,τ + hβ−1‖uh − Ih

0 u‖1,2−β,τ )

(4.32)

Now, considering the cases above for β ≥ 1, we combine inequalities (4.29), (4.31),
(4.28) and (4.25) to get

‖u − uh‖0 ≤ C(hα|u|α + hβ−1‖u − Ih
0 u‖1,2−β + h1−β‖uh − Ih

0 u‖1,β)

≤ C(hα|u|α + hβ−1hα−β+1‖u‖α+2−β,2−β + h1−βhα+β−1‖u‖α+β,β)

≤ Chα(|u|α + ‖u‖α+2−β,2−β + ‖u‖α+β,β).
(4.33)

The case when β < 1 follows analogously which establishes the lemma.
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Remark 4.13 For the optimal finite element convergence of O(h) with respect to the

weighted functional and H1 norms, we select β = 2−α. But theorem 4.12 also requires

that β < 1 + α. Thus, when α ∈ [1/2, 1), we may use a weighting with β = 2− α and

expect optimal rates, but when α ∈ (0, 1/2), our theory only guarantees at best O(2α)
convergence using β = 1 + α. Numerical results, however, indicate that values of β
larger than the theory allows can be used to recover optimal rates. We explore this in

the next section.

5. Computational results. In this section, we present some numerical exam-
ples of the weighted-norm procedure to validate the error bounds in the previous
section.

As a test problem, we minimize the weighted functional on the following L-shaped
domain: Ω = (−0.5, 0.5)2 \ [0, 0.5)× (−0.5, 0], which yields α = π/ω = 2/3. Function

f is chosen so that the solution of this test problem is u = ∇(χ(r)r
2
3 sin(2θ/3)), where

χ(r) = 1 for r < 1/8, χ(r) = 0 for r > 3/8, and χ(r) is C2 smooth. Again, note that
f ∈ L2(Ω) but u /∈ H1(Ω).

Define the following measures of the accuracy of the computed solution, uh:

nonweighted functional norm G
1/2 = (‖∇ · uh − f‖2

0 + ‖∇ × uh‖2
0)

1/2,

nonweighted L2 norm of the error ε0 = ‖u − uh‖0,

nonweighted H1 seminorm of the error ε1 = |u − uh|1,
weighted functional norm G

1/2

w = Gw(uh; f)
1/2,

weighted L2 norm of the error ε0w = ‖u − uh‖0,β ,

weighted H1 seminorm of the error ε1w = |u − uh|1,β .

Since α = 2/3, we choose the optimal weight parameter, β = 2 − α = 4/3, for
our computations. Table 5.1 summarizes discretization error and convergence rates
for β = 4/3.

Asymptotic convergence rates in Ω are found to be approximately O(h) for G
1/2
w

and ε1w, O(h2) for ε0w and O(h
2
3 ) for ε0. The approximation does not converge in

either the ε1 or G
1/2 measures since u /∈ H1(Ω).

To distinguish between behavior near to and away from the singularity, we con-
sider the error of the solution above on a partitioning of Ω. Define Ω0 = Ω ∩ ( 3

8 ,
5
8 )2

and Ω1 = Ω\Ω0; see figure 5.1.

Table 5.2 summarizes the asymptotic discretization accuracy obtained at the finest
mesh size in subdomains Ω0 and Ω1. Away from the singularity we observe optimal
accuracy in all measures. As expected, near the singularity, the solution fails to
converge in the nonweighted functional and H1 norms. The nonweighted L2 error
achieves accuracy of approximately O(h

2
3 ) near the singularity.

Figure 5.2 shows the first component of the exact solution, u1, and the standard
FOSLS approximation uh

1 . Figure 5.3 shows the error of the first component of the
approximated solution for the standard FOSLS and the weighted-norm FOSLS meth-
ods. We see that the error in the approximation in standard FOSLS is highest near the
singularity, but remains large even away from the corner point. In the weighted-norm
FOSLS implementation, the error remains large near the singularity, as we expect,
but is now concentrated only near the corner point. The pollution effect is removed
by the weighting procedure.
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h G
1/2
w Ratio Rate ε1w Ratio Rate

8−1 5.52 3.81
16−1 4.34 1.27 0.35 1.47 2.59 1.37
32−1 2.34 1.85 0.89 6.66e-01 2.21 1.14
64−1 1.19 1.97 0.98 2.97e-01 2.24 1.16
128−1 5.98e-01 1.99 0.99 1.41e-01 2.11 1.08
256−1 3.00e-01 1.99 0.99 6.74e-02 2.09 1.06
512−1 1.50e-01 2.00 1.00 3.31e-02 2.04 1.03

h ε0w Ratio Rate ε0 Ratio Rate
8−1 3.08e-01 3.72e-01
16−1 1.35e-01 2.28 1.19 1.93e-01 1.93 0.95
32−1 4.07e-02 3.32 1.73 8.93e-02 2.16 1.11
64−1 1.11e-02 3.67 1.88 4.93e-02 1.81 0.86
128−1 2.98e-03 3.72 1.90 3.00e-02 1.64 0.71
256−1 7.84e-04 3.80 1.93 1.87e-02 1.60 0.68
512−1 2.06e-04 3.81 1.93 1.18e-02 1.58 0.66

Table 5.1

Convergence of discretization error for weighted-norm FOSLS.

Ω0

Ω1

Fig. 5.1. L-shaped domain Ω and subdomains Ω0 and Ω1.

G
1/2
w G

1/2 ε1w ε1 ε0w ε0

Ω1 O(h) O(h) O(h) O(h) O(h2) O(h2)

Ω0 O(h) O(1) O(h) O(1) O(h2) O(h
2
3 )

Ω O(h) O(1) O(h) O(1) O(h2) O(h
2
3 )

Table 5.2

Accuracy in Ω0, Ω1, and Ω with β = 2 − α.

There are many boundary value problems not directly covered by the theory
presented here that are of interest. For example, Poisson’s equation with mixed
boundary conditions on the domain used above has a value of α = 1/3. To recover
optimal convergence for this problem, the weighted-norm method requires a value of β
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Fig. 5.2. Exact solution component u1 and solution component uh

1
approximated by standard

FOSLS on the h = 32−1 mesh.
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(a) Standard FOSLS.
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(b) Weighted-norm FOSLS, β = 2 − α.

Fig. 5.3. Reduction of the pollution effect by the weighted-norm procedure. Each plot is the

error of solution component uh

1
on the h = 32−1 mesh.

larger than theorem 4.12 allows. In other elliptic equations (e.g., Stokes or the linear
elasticity equations), the value of α is generally smaller than for Poisson’s equation
for the same domain and boundary condition type. In each of these cases, a larger β
value is necessary for optimal convergence. This leads us to consider using larger β
than the theory allows.

Consider the same example problem as above on uniform mesh sizes of h =
1/8, 1/16, ..., 1/512, and values of β ranging from 1/3 to 23/6.

Figure 5.4 plots the convergence rate at the finest level for: the weighted functional

norm, G
1/2
w ; the weighted L2 norm, ε0w; and the L2 norm, ε0. While the functional

norm retains optimal accuracy for large values of β, the solution fails to converge in
the weighted and nonweighted L2 measures for β & 3. This indicates that, although
the weighted-norm approach seems to be more robust than the theory allows, large
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Fig. 5.4. Convergence rates versus β. The shaded region indicates values of β for which the

assumptions of theorem 4.12 are satisfied.

values of β should still be used with caution.

The method presented here is applicable to a wide range of problems and provides
an efficient alternative to more specialized techinques for treating singularities in
boundary value problems. Further numerical results for other problems including
systems and in three dimensions can be seen in a companion paper.
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