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A LEAST-SQUARES FINITE ELEMENT METHOD FOR THE
LINEAR BOLTZMANN EQUATION WITH ANISOTROPIC

SCATTERING∗

TRAVIS M. AUSTIN† AND THOMAS A. MANTEUFFEL‡

Abstract. Least-squares methods have been applied to a wide range of differential equations and
have been established to be competitive with other existing discretization strategies [P. B. Bochev
and M. D. Gunzburger, SIAM Rev., 40 (1998), pp. 789–837]. In this article, we consider a least-
squares method for the linear Boltzmann equation with anisotropic scattering. A similar method has
already been developed, and extensively examined, for the linear Boltzmann equation with isotropic
scattering. The success of the least-squares method for isotropic scattering depends on scaling the
linear Boltzmann equation so that minimization of the least-squares functional in a discrete space
always yields accurate discrete solutions. A similar scaling of the linear Boltzmann equation is
employed for anisotropic scattering. In the previous work for isotropic scattering, coercivity and
continuity results were established for the scaled least-squares functional relative to a physically
reasonable norm. In this paper, we extend the previous coercivity and continuity results so that they
hold in this more general case of anisotropic scattering. Additionally, we extend the bounds for the
discretization error for the thin regime and for the thick regime. For the thick regime, we establish
optimal error estimates for the case of highly anisotropic scattering.
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1. Introduction. In this paper, we examine a least-squares method that is used
to obtain discrete solutions to the single-group, steady-state linear Boltzmann equa-
tion with anisotropic scattering. The least-squares method for isotropic scattering
was carefully analyzed for slab geometry in [12] and for xyz-geometry in [13]. Here,
in the context of xyz-geometry, we extend the generality of the least-squares method
by allowing for anisotropic scattering, whereby a particle has a preferential direction
of scatter after collision.

For isotropic scattering, where particles have no preferential direction of scatter,
it was proved in [12, 13] that the least-squares method yields discrete solutions that
exhibit the correct asymptotic behavior in the diffusion limit. In this limit, the leading-
order asymptotic solution of the Boltzmann equation converges to the solution of a
diffusion equation. In [13], ellipticity of the least-squares functional was proved and
the existence of optimal error estimates for a PN angular discretization and a finite
element spatial discretization was established. In [14], the authors enhanced the least-
squares approach by adding a boundary functional to the least-squares functional,
thus, weakly imposing the boundary conditions.

In [5], anisotropic scattering in the scaled least-squares approach was first consid-
ered in the context of multigroup transport. A scaling operator for the least-squares
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approach with anisotropic scattering in the multigroup context was introduced. Ad-
ditionally, convergence results for a multilevel solution algorithm for the multigroup
version of anisotropic scattering were presented. However, ellipticity of the scaled
least-squares functional or estimates of the least-squares error were not considered.

For the single group equation, we set a foundation for the scaled least-squares
approach introduced in [5] by proving ellipticity of the least-squares functional. We
employ a scaling operator that is a single-group form of the scaling operator used
in [5]. The proof of ellipticity for the thick regime with large absorption is identical
to the equivalent case for isotropic scattering. The remaining cases depend on new
techniques that were not used in [14]. Moreover, the proofs for the thin regime and the
thick regime with small absorption have as special cases the proofs for the isotropic
scattering [14]. It is the opinion of the authors that the proofs presented here are
simpler and clearer than the proofs of [14], albeit resulting in small coercivity bounds.

The ellipticity results imply that the least-squares variational problem is well
posed in an appropriate norm with ellipticity constants that are independent of the
problem parameters. This ellipticity allows us to use Céa’s lemma in establishing error
bounds. Thus, once we introduce the discretization scheme (drawn from [5, 13, 14]),
we use Céa’s lemma to illustrate optimal bounds on the discretization error in the
context of anisotropic scattering for the thin and thick regimes. For the thin regime,
the proof from [14] can be invoked. For the thick regime with mildly anisotropic
scattering, we merely indicate that the results are of the same form as [14]. There
will, however, be new results for the thick regime with highly anisotropic scattering.
These results will depend on an asymptotic expansion from Larsen and Pomraning in
[10].

Most of the research on numerical methods for the linear Boltzmann equation
with anisotropic scattering has focused on devising a plan to speed up source itera-
tion, which is the standard iterative solution method used to solve isotropic transport
problems [11]. Research has not focused on tailoring the discretization schemes used
for isotropic scattering problems to anisotropic scattering problems because, in gen-
eral, the same discretization techniques may be used [2, 15, 16]. Here, we focus on
the formulation and discretization using a least-squares approach. We will not ad-
dress the issue of what is the appropriate method for solving the resulting system
of equations. For now we refer the reader to [5]. Since the approach for anisotropic
scattering first described in [5] has not been studied theoretically, we concentrate on
placing the method on firm ground. To this end, we proceed in the following way.

In section 2, we present the necessary preliminaries. Previous results for isotropic
scattering are described in section 3. The scattering operator is presented in section
4 along with ellipticity results. In section 5, we describe the spatial and angular
discretization scheme and present error estimates. In the final section, we discuss
future work and further extensions of the least-squares method.

2. Preliminaries. As discussed in [11], the single-group, steady-state linear
Boltzmann equation with anisotropic scattering is given by

(2.1)
[Ω · ∇ + σt I − σs K]ψ(x,Ω) = q for (x,Ω) ∈ R× S2 ,

ψ(x,Ω) = g for x ∈ ∂R with n · Ω < 0,

where σt is the total cross section, σs is the scattering cross section, and ψ is the
angular flux to be determined for all points x ∈ R ⊂ �3 and all possible travel
directions Ω = (sin θ cosϕ , sin θ sinϕ, cos θ) ∈ S2. Spatial domain R is assumed to
be an open connected set with diam(R) = 1 and to have a piecewise C1,1 boundary
denoted by Γ := ∂R.
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To define anisotropic scattering operator K, we must recall the normalized spher-
ical harmonics from [3], given by

(2.2) Y�m(Ω) := Y�m(θ, ϕ) = (−1)m

√
(2� + 1)(�−m)!

(� + m)!
Pm
� (cos θ) eimϕ,

where Pm
� (·) corresponds to the (�m)th associated Legendre moment. Normalization

dΩ =
sin(θ) dθ dϕ

4π

allows us to expand the scattering operator K as

(2.3) (Kv)(x,Ω) =

∞∑
�=0

σ�

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
,

where σ� ∈ [0, 1] for all l > 0 (with σ0 ≡ 1) and Y ∗
�m is the complex conjugate of Y�m.

This infinite sum is truncated, in practice, such that for some NS ≥ 0,

(2.4) (Kv)(x,Ω) =

NS∑
�=0

σ�

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
.

Note that NS depends on the degree of anisotropy in the scattering, and that when
NS = 0 in (2.4), we have

(2.5) (Kv)(x,Ω) =

∫
S2

v(x,Ω
′
) dΩ

′
,

resulting in the isotropic transport operator. For the remainder, we refer to the
operator in (2.5) as P. Note that for subset Ξ ⊂ N ≡ {0, 1, 2, 3, . . . } we can define
the more general operator

(2.6) (PΞ v)(x,Ω) :=
∑
�∈Ξ

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
.

Next, to distinguish between the isotropic and anisotropic transport operators,
we introduce the notation LI and LA such that, for v : R× S2 → �,

(2.7) LI v := Ω · ∇ v + σt (I − P) v + σa P v

and

(2.8) LA v := Ω · ∇ v + σt (I − K) v + σa K v,

where σa := σt − σs represents the absorption cross section. Also, at times, the
scattering term of the anisotropic transport operator will be represented by

(2.9) S = σt(I − K) + σa K,

or by

(2.10) Sv(x,Ω) =

∞∑
�=0

μ�

�∑
m=−�

Y�m(Ω)

∫
S2

Y ∗
�m(Ω

′
) v(x,Ω

′
) dΩ

′
,
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where

(2.11) μ� = σt(1 − σ�) + σaσ�.

Next, let the standard L2 inner product and norm be denoted by

〈u, v〉 :=

∫
S2

∫
R

u v∗ dxdΩ
′

and ‖u‖ :=
√

〈u, u〉,

where v∗ again is the complex conjugate of v. Denote by L2(S2 × R) the set of
functions that are L2-integrable on S2 ×R. Any function in L2(S2 ×R) has a unique
expression in terms of the spherical harmonics since the spherical harmonics are an
orthonormal basis for L2(S2). Specifically, every v ∈ L2(S2 ×R) has the expansion

(2.12) v(x,Ω) =

∞∑
�=0

�∑
m=−�

φ�m(x)Y�m(Ω),

with moments φ�m(x) given by

(2.13) φ�m(x) =

∫
S2

Y ∗
�m(Ω

′
)v(x,Ω

′
) dΩ

′
.

3. Previous results for isotropic scattering. In [13], a scaling operator of
the form R := a(I − P) + bP was defined, with a and b depending on σt and σa.
The isotropic form of (2.1) was then restated as the minimization of the least-squares
functional

(3.1) G0(ψ; q) :=
∥∥∥R−1/2(LI ψ − q)

∥∥∥2

.

The main result presented in [13] showed coercivity and continuity of the bilinear
form

〈
R−1LI u,LI v

〉
with respect to

(3.2) ‖v‖2
V :=

〈
R−1Ω · ∇v,Ω · ∇v

〉
+ 〈Rv, v〉 .

To be more precise, defining V as the space of functions bounded in the V -norm and
V0 as the subspace of V with homogeneous inflow boundary conditions, the authors
established V -ellipticity, i.e., constants Ce and Cc, independent of σt and σa, such
that

(3.3) Ce ‖v‖2
V ≤

〈
R−1LIv,LIv

〉
≤ Cc ‖v‖2

V

for any v ∈ V0. In [14], they extended this work by adding a boundary functional to
the V -norm and the least-squares functional, and again proved ellipticity.

To describe the work in [14], it is necessary to describe the boundary functional.
For each x ∈ Γ, define n(x) to be the outward unit normal, define

(3.4) ΓI(Ω) := {x ∈ Γ : n · Ω < 0} ,

and define ΓO(Ω) := Γ/ ΓI(Ω) to be the set of inflow and outflow particle travel
directions. By defining D := R×S2, we then denote the inflow and outflow boundary
of D by

(3.5) ∂DI := {(x,Ω) ∈ D : x ∈ ΓI(Ω)}
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and

(3.6) ∂DO := {(x,Ω) ∈ D : x ∈ ΓO(Ω)} .

Corresponding to the inflow and outflow boundary of D are

(3.7) bI(u, v) :=

∫
∂R

∫
n·Ω<0

uv|n · Ω|dΩdσ

and

(3.8) bO(u, v) :=

∫
∂R

∫
n·Ω>0

uv|n · Ω|dΩdσ.

Associated with bI(·, ·) is the inflow norm

(3.9) ‖v‖2
BI

:= bI(v, v)

and the corresponding Sobolev space

(3.10) BI :=
{
v ∈ C∞(∂RI) : ‖v‖2

BI
< ∞

}
.

For q ∈ L2 and g ∈ BI , the least-squares functional studied in [14] is given by

(3.11) GI(ψ; q, g) := G0(ψ; q) + 2bI(ψ − g, ψ − g).

The authors obtained ellipticity results for (3.11) with respect to

(3.12) ‖v‖2
V1

:= ‖v‖2
V + bI(v, v)

and the space V1 consisting of functions bounded in the V1-norm. Since GI offers a
more robust approximation of boundary conditions than G0, we work exclusively in
this paper with a least-squares functional that is similar in form to (3.12).

4. New results for anisotropic scattering. The scaling operator for anisotropic
scattering is given by

(4.1) R :=

⎧⎨⎩
I in Region I ,

σt(I − K) + σaK in Region II ,
σt(I − K) + 1

σt
K in Region III ,

where Regions I, II, and III are defined in Figure 4.1. Note that R is a continuous
function in σt and σa for fixed K and can be alternatively expressed as

(4.2) Rv :=
∞∑
�=0

ν�

�∑
m=−�

φ�m(x)Y�m(Ω),

using φ�m in (2.13) and

(4.3) ν� :=

⎧⎨⎩
1 for Region I ,

σt (1 − σ�) + σa σ� for Region II ,
σt (1 − σ�) + 1

σt
σ� for Region III .
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Fig. 4.1. Division of parameters into Regions I, II, and III.

In the remainder of this section, we develop V1-ellipticity proofs for the case of
anisotropic scattering using the scaling operator (4.1). Firstly, though, we note that
the V1-norm, defined by (3.12), does not change for anisotropic scattering once R is
defined in terms of (4.1). Secondly, for q ∈ L2 and g ∈ BI , we note that the solution
of (2.1) can be expressed as

(4.4) ψ = arg min
v∈V1

GA (v; q, g),

where GA(v; q, g) is the anisotropic equivalent of GI(v; q, g). The corresponding
variational form is: find ψ ∈ V1 such that

(4.5) a(ψ, v) :=
〈
R−1LA ψ,LA v

〉
+ 2bI(ψ, v) =

〈
R−1q,LA v

〉
+ 2bI(g, v)

for every v ∈ V1. Once we establish V1-ellipticity results for a(ψ, v), we will have
established that (4.5) is well posed. This well posedness will imply that, for each
pair q ∈ L2 and g ∈ BI , there exists a unique ψ ∈ V1 satisfying (2.1). Moreover, a
standard stability result (cf. [4]) implies that we get the a priori estimate:

(4.6) ‖ψ‖V1
≤ C−1

e

(∥∥∥R−1/2q
∥∥∥ + bI(g, g)

1/2
)
,

where Ce is the coercivity bound.

4.1. Auxiliary lemmas. In this section, we present two lemmas. Most of the
first lemma is a restatement of Lemma 3.1 from [14]. The second lemma is used in
the thin and thick regime ellipticity proofs.

First, we define an operator that arises in Lemma 4.1, and the ellipticity proof
for the thick regime with small absorption. To define the operator, we define s =
(σt − 1

σt
)/(σt − σa) and split the moments into the two disjoint sets,

Υ = { � ∈ N : σl > s} = {� ∈ N : μ� < 1/σt} ,(4.7)

Υ̂ = { � ∈ N : σl ≤ s} = {� ∈ N : μ� ≥ 1/σt} .(4.8)

We can then define the projection operator

PΥv(x,Ω) :=
∑
�∈Υ

�∑
m=−�

φ�m(x)Y�m(Ω),
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according to (2.6). A similar operator can be defined for Υ̂. Furthermore, we introduce
the operator D given by

(4.9) D v(x,Ω) := PΥv(x,Ω) +
∑
�∈Υ̂

ζl

�∑
m=−�

φ�m(x)Y�m(Ω),

where ζ� := (1 − σ�) + σaσ�

σt
. Notice that Ds is a meaningful operator for any s ∈ �

and that ‖D‖ ≤ 1 since ζ� ≤ 1. In the following, we use the notation,
∑

� =
∑∞

� .
Lemma 4.1. For v ∈ V1, we have
(i) 2 〈Ω · ∇v, v〉 = bO(v, v) − bI(v, v) ≥ −bI(v, v) ;
(ii) the Poincaré-Friedrichs inequality

(4.10) ‖v‖2 ≤ 2 diam(R)2 ‖Ω · ∇v‖2
+ 2 diam(R) bI(v, v) ;

(iii) for diam(R) = 1 and σt ≥ 1, we have

(4.11) ‖PΥ v‖2 ≤ 2
∥∥∥Q−1/2 Ω · ∇v + σt PΥ Ω · ∇v

∥∥∥2

+ 2bI(v, v) ,

where Q := D (I − PΥ) and Qs := Ds (I − PΥ) for s ∈ �.
Proof. The proofs of (i) and (ii) are found in Lemma 3.1 of [14], while (iii) is

proved by assuming (ii), and noting that ‖PΥ v‖2 ≤ ‖v‖2
and

‖Ω · ∇ v‖2 ≤
∥∥∥D−1/2 (I − PΥ)Ω · ∇v + σt PΥ Ω · ∇v

∥∥∥2

.

Lemma 4.2. Given λ� > 0 and ω� > 0, the minimum of

(4.12) I(d) :=
∑
�

(λ� − d)2ω�

for d ∈ [0, 1] is achieved at

dm =

∑
� λ�ω�∑
� ω�

,

and furthermore,

I(dm) =
∑
�

λ2
�ω� −

(
∑

� λ�ω�)
2∑

� ω�
.

Proof. The result is established by differentiating I(d) with respect to d.
The thin regime and thick regime with small absorption ellipticity proofs that

follow make use of the projection operator

(4.13) P�v :=

�∑
m=−�

φ�m(x)Y�m(Ω),

implying that (2.10) can be expressed as

(4.14) Sv(x,Ω) =
∞∑
�=0

μ� P� v(x,Ω).

Note the observation,
∑

� P� = I, that we need in the following.
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4.2. Thin regime (0 ≤ σa ≤ σt ≤ 1). For the thin regime, we have R = I
and

‖u‖2
V1

= ‖Ω · ∇v‖2
+ ‖v‖2

+ bI(v, v).

Theorem 4.3 (continuity and V1-ellipticity for thin regime). Assume that 0 ≤
σa ≤ σt ≤ 1. Then, for all u, v ∈ V1, we have

|a(u, v)| = | 〈LA u,LA v〉 + 2bI(u, v)| ≤ Cc ‖u‖V1
‖v‖V1

,(4.15)

a(v, v) = 〈LA v,LA v〉 + 2bI(v, v) ≥ Ce ‖v‖2
V1

,

with Cc ≤ 2 and Ce ≥ 0.06574145.
Proof. Using the Cauchy–Schwarz inequality, we obtain

|a(u, v)| ≤ ‖LA u‖ ‖LA v‖ + 2bI(u, u)
1
2 bI(v, v)

1
2

≤
(
‖LA u‖2

+ 2bI(u, u)
) 1

2
(
‖LA v‖2

+ 2bI(v, v)
) 1

2

.

Given that σt(1 − σ�) ≤ 1 and σaσ� ≤ 1, we have

‖LA u‖2 ≤ 2
(
‖Ω · ∇u‖2

+ ‖(I − P)u‖2
+ ‖Pu‖2

)
= 2

(
‖Ω · ∇u‖2

+ ‖u‖2
)

so that ‖LA u‖2
+ 2bI(u, u) ≤ 2 ‖u‖2

V1
. This proves continuity of a(·, ·).

To prove ellipticity, we note that 0 ≤ μ� ≤ 1 and refer the reader to (4.14). Using
this definition of S, we have

a(v, v) = 〈Ω · ∇v,Ω · ∇v〉 + 2 〈Ω · ∇v,Sv〉 + 〈Sv,Sv〉 + 2 bI(v, v)

= 〈Ω · ∇v,Ω · ∇v〉 + 2
∑
�

μ� 〈Ω · ∇v,P�v〉 +
∑
�

μ2
� 〈P�v, v〉 + 2 bI(v, v).(4.16)

For any d ∈ [0, 1], adding the identity

2d

[
〈Ω · ∇v, v〉 −

∑
�

〈Ω · ∇v,P�v〉
]

= 0

to (4.16) and using Lemma 4.1(i) yields

a(v, v) ≥ 〈Ω · ∇v,Ω · ∇v〉 + 2
∑
�

(μ� − d) 〈Ω · ∇v,P�v〉(4.17)

+
∑
�

μ2
� 〈P�v, v〉 + (2 − d) bI(v, v).

For convenience, we put A� = ‖P�Ω · ∇v‖2
, A = ‖Ω · ∇v‖2

, B� = ‖P�v‖2
, and

B = ‖v‖2
. We also define γ� = A�/A and δ� = B�/B and note that∑

�

δ� =
∑
�

γ� = 1.

Thus we seek a proof of

a(v, v) ≥ C (A + B + bI(v, v))
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for all v ∈ V1. Applying the arithmetic-geometric inequality to the cross product term
in (4.17) with η > 0 yields

a(v, v) ≥
(
A− η

∑
�

A�

)
+

(∑
�

μ2
�B� −

1

η

∑
�

(μ� − d)2B�

)
+ (2 − d) bI(v, v)

= (1 − η)A +

(∑
�

μ2
�δ� −

1

η

∑
�

(μ� − d)2δ�

)
B + (2 − d) bI(v, v)

since B� = δ�B. Making use of Lemma 4.2 we choose d =
∑

� μ�δ� ≤
∑

� δ� = 1,
implying that

a(v, v) ≥ [1 − η] A +

⎡⎣∑
�

μ2
�δ� −

1

η

⎛⎝∑
�

μ2
�δ� −

(∑
�

μ�δ�

)2
⎞⎠⎤⎦ B + bI(v, v)

= [1 − η]A +

⎡⎣(1 − 1

η

)∑
�

μ2
�δ� +

1

η

(∑
�

μ�δ�

)2
⎤⎦ B + bI(v, v).

For convenience, define δ =
∑

� μ
2
�δ� ≤

∑
� μ�δ� ≤ 1 such that

a(v, v) ≥ [1 − η]A +

[(
1 − 1

η

)
δ +

1

η
δ2

]
B + bI(v, v)

= [1 − η]A +

[
δ − 1

η
δ(1 − δ)

]
B + bI(v, v).

Using Lemma 4.1(ii) (assuming diam(R) = 1) we get

a(v, v) ≥ [1 − η − β]A +

[
δ − 1

η
δ(1 − δ) +

β

2

]
B + [1 − β] bI(v, v)

for any β ≥ 0. Define

C1 = 1 − η − β,

C2 = δ − 1

η
δ(1 − δ) +

β

2
,

C3 = 1 − β.

Next, set η =
√
δ(1 − δ) and choose β to make C1 = C2. This requires

1 −
√
δ(1 − δ) − β = δ −

√
δ(1 − δ) +

β

2
,

which implies

β =
2

3
(1 − δ) ≥ 0.

Plugging back into C1 yields

C1 = C2 = 1 −
√
δ(1 − δ) − 2

3
(1 − δ),

C3 = 1 − 2

3
(1 − δ) ≥ 1

3
.
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Numerically we find that the minimum value of C1 occurs at δ =
1−

√
16/52

2 ≈
0.2226499 and yields C1 = C2 ≈ 0.06574145. Comparing to the bound on C3, we
see that Ce ≥ 0.06574145.

4.3. Thick regime with “large” absorption (1 ≤ σt < ∞ ; 1
σt

≤ σa ≤
σt). For the thick regime with “large” absorption, the scaling is given by

(4.18) R = σt (I − K) + σa K,

which implies that

‖v‖2
V :=

〈
R−1Ω · ∇v,Ω · ∇v

〉
+ 〈R v, v〉

and

‖v‖2
V1

= ‖v‖2
V + bI(v, v).

Theorem 4.4 (continuity and V1-ellipticity for the thick regime with “large”
absorption). Assume that 1 ≤ σt < ∞ and 1

σt
≤ σa ≤ σt. Then, for all u, v ∈ V1, we

have

|a(u, v)| ≤ 2 ‖u‖V1
‖v‖V1

,(4.19)

a(v, v) ≥ ‖v‖2
V1

.

Proof. See the proof establishing coercivity and continuity in thick regime with
“large” absorption from [14]. Proof for coercivity is the same because, as in [14],
scaling operator R, in (4.18) is equal to scattering operator S.

4.4. Thick regime with “small” absorption (1 ≤ σt ≤ ∞ ; σa ≤ 1
σt

).
For the thick regime with “small” absorption, we must define the scaling operator so
that it does not become singular as σa → 0. Hence, the scaling operator defined in
(4.18) is recast as

(4.20) R = σt(I − K) +
1

σt
K,

while the V -norm and the V1-norm have the same dependence on R.
One of the key ingredients of the following proof is the intermediate scaling op-

erator defined below. Recall Υ and Υ̂ defined by (4.7) and (4.8), and Q defined by
(4.11). The intermediate scaling operator is

T := σtQ +
1

σt
PΥ = S(I − PΥ) +

1

σt
PΥ.

Note that Q ≤ I, and additionally, that σaPΥ ≤ SPΥ ≤ 1
σt
PΥ, which is equivalent

to σa ≤ μ� ≤ 1
σt

for � ∈ Υ. The first inequality is true by definition of μ�, and the
second is true by definition of Υ. We also introduce τ� according to

(4.21) τ� :=

{ 1
σt

for � ∈ Υ

μ� for � ∈ Υ̂

such that, from (4.13),

T v(x,Ω) =
∞∑
�=0

τ�P�v(x,Ω).
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νl :

τl :

1/σt

σt

σl s 1.0

Fig. 4.2. Graph of τ� and ν�, where the black region on σ� ∈ [0, 1] denotes Υ̂ and the grey
region denotes Υ. From the graph we can see that the largest ratio occurs at the interface between
Υ̂ and Υ, which is where σ� = s.

For future reference, we note that

T −1S = ST −1 = (I − PΥ) + σtSPΥ,(4.22)

T −1S2 = S2T −1 = σtQ + σtS2PΥ,(4.23)

and S can be expressed as

S = S(I − PΥ) + SPΥ = σtQ + SPΥ.

Note the inequality

(4.24) 〈Sv, v〉 ≤ 〈T v, v〉 ≤ 〈Rv, v〉

and the related inequality

(4.25)
〈
T −1v, v

〉
≥

〈
R−1v, v

〉
.

We also need the following lemma, which further relates T to R.
Lemma 4.5. For σt ≥ 1 and σa ≤ 1/σt, we have

2 〈T v, v〉 ≥ 〈Rv, v〉 and
〈
T −1v, v

〉
≤ 2

〈
R−1v, v

〉
.

Proof. To prove both results, we establish a bound relating τ� to ν�, where ν� is
defined by (4.3). By observing the graph of τ� and ν� in Figure 4.2, we see that the
ratio ν�/τ� is maximized at s = (σt − 1

σt
)/(σt − σa). Evaluating both ν� and τ� at s

yields

ν�
τ�

=
σt(1 − s) + s/σt

1/σt
= σ2

t (1 − s) + s =
2σt − σaσ

2
t − 1/σt

σt − σa
.

As σa → 0, the value of s decreases to its minimum (dependent on σa) of 1 − 1/σ2
t .

Since ν�/τ� = σ2
t (1 − s) + s, the maximum of the ratio is where s is at its minimum,

i.e., where σa = 0. This implies

ν�
τ�

≤ 2 − 1/σ2
t ≤ 2.

Both results follow from this inequality.
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Theorem 4.6 (continuity and V1-ellipticity for thick regime with “small” ab-
sorption). Assume that 1 ≤ σt < ∞, 0 ≤ σa ≤ 1

σt
. Then, for all u, v ∈ V1, we

have

|a(u, v)| = |
〈
R−1LA u,LA v

〉
+ 2bI(u, v)| ≤ Cc ‖u‖V1

‖v‖V1
,(4.26)

a(v, v) =
〈
R−1LA v,LA v

〉
+ 2bI(v, v) ≥ Ce ‖v‖2

V1
,(4.27)

with Cc ≤ 2 and Ce ≥ 0.01667, independent of σt and σa.
Proof. The proof for continuity follows from the same reasoning as used in The-

orem 4.4 since

|a(u, v)| ≤
(∥∥∥R− 1

2LA u
∥∥∥ + 2bI(u, u)

) 1
2
(∥∥∥R− 1

2LA v
∥∥∥ + 2bI(v, v)

) 1
2

.

The observation that μ� ≤ ν� implies∥∥∥R− 1
2Su

∥∥∥ ≤
∥∥∥R 1

2u
∥∥∥ .

One can easily show then that
∥∥∥R− 1

2LA u
∥∥∥2

≤ 2 ‖u‖2
V .

To establish coercivity, we proceed as follows. We first define

(4.28) ã(v, v) :=
〈
T −1LAv,LAv

〉
+ 2 bI(v, v),

and through Lemma 4.5, we get

(4.29) a(v, v) ≥ 1

2
ã(v, v).

Assume for now that we have

(4.30) ã(v, v) ≥ C̃e

(∥∥∥T −1/2Ω · ∇v
∥∥∥2

+
∥∥∥T 1/2v

∥∥∥2

+ bI(v, v)

)
.

Using inequality (4.25) and Lemma 4.5, we can bound the first two terms on the
right-hand side of (4.30) from below to get

(4.31) ã(v, v) ≥ C̃e

2

(∥∥∥R−1/2Ω · ∇v
∥∥∥2

+
∥∥∥R1/2v

∥∥∥2

+ bI(v, v)

)
.

With (4.29) we get as an ellipticity constant in (4.27) the value of C̃e/4. Thus, we

are only left to prove (4.30), and determine C̃e.
Noting (4.22) and (4.23) we write

ã(v, v) =
〈
T −1Ω · ∇v,Ω · ∇v

〉
+
〈
S2T −1v, v

〉
+ 2

〈
ST −1Ω · ∇v, v

〉
+ 2bI(v, v)

=
1

σt

〈
Q−1Ω · ∇v,Ω · ∇v

〉
+ σt 〈PΥΩ · ∇v,Ω · ∇v〉 + σt 〈Qv, v〉

+σt

∑
�∈Υ

μ2
� 〈P�v, v〉 + 2 〈Ω · ∇v, (I − PΥ)v〉 + 2σt

∑
�∈Υ

μ� 〈Ω · ∇v,P�v〉

+ 2bI(v, v).

For any d ∈ [0, 1], adding the identity

2d [〈Ω · ∇v, v〉 − 〈Ω · ∇v, (I − PΥ)v〉 − 〈Ω · ∇v,PΥv〉] = 0
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to the last line above, and using the inequality from Lemma 4.1(ii), yields

ã(v, v) ≥ 1

σt

〈
Q−1Ω · ∇v,Ω · ∇v

〉
+ σt 〈PΥΩ · ∇v,Ω · ∇v〉 + σt 〈Qv, v〉

+σt

∑
�∈Υ

μ2
� 〈P�v, v〉 − 2|1 − d| |〈Ω · ∇v, (I − PΥ)v〉|

−2
∑
�∈Υ

|σtμ� − d| |〈Ω · ∇v,P�v〉| + (2 − d)bI(v, v).

It is convenient to note that we may write

| 〈Ω · ∇v, (I − PΥ)v〉 | ≤
∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v

∥∥∥∥ ∥∥∥√σtQ
1/2v

∥∥∥ ,
and for � ∈ Υ,

| 〈Ω · ∇v,P� v〉 | ≤ ‖√σt P� Ω · ∇v‖
∥∥∥∥ 1
√
σt

P� v

∥∥∥∥ .
Let’s now define

δ� :=

∥∥∥ 1√
σt
P�v

∥∥∥2

∥∥∥√σtQ1/2v + 1√
σt
PΥv

∥∥∥2 and γ� :=

∥∥√σtP�Ω · ∇v
∥∥2∥∥∥ 1√

σt
Q−1/2Ω · ∇v +

√
σtPΥΩ · ∇v

∥∥∥2

for � ∈ Υ. Additionally, let δ0 = 1−
∑

�∈Υ δ� and γ0 = 1−
∑

�∈Υ γ�. For convenience,
set

A =
∥∥∥T −1/2Ω · ∇v

∥∥∥2

=

∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v +
√
σtPΥΩ · ∇v

∥∥∥∥2

and

B =
∥∥∥T 1/2v

∥∥∥2

=

∥∥∥∥√σtQ1/2v +
1

√
σt

PΥv

∥∥∥∥2

.

We can now use the arithmetic-geometric inequality to write, for any η > 0,

ã(v, v) ≥
∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v

∥∥∥∥2

+
∑
�∈Υ

‖√σtP�Ω · ∇v‖2
+
∥∥∥√σtQ1/2v

∥∥∥2

+
∑
�∈Υ

(σtμ�)
2

∥∥∥∥ 1
√
σt

P�v

∥∥∥∥2

− η

∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v

∥∥∥∥2

− (1 − d)2

η

∥∥∥√σtQ1/2v
∥∥∥2

−
∑
�∈Υ

η ‖√σtP�Ω · ∇v‖2

−
∑
�∈Υ

(σtμ� − d)2

η

∥∥∥∥ 1
√
σt

P�v

∥∥∥∥2

+ (2 − d)bI(v, v)

=

[
(1 − η)γ0 +

∑
�∈Υ

(1 − η)γ�

]
A +

[(
1 − (1 − d)2

η

)
δ0(4.32)

+
∑
�∈Υ

(
(σtμ�)

2 − (σtμ� − d)2

η

)
δ�

]
B + (2 − d)bI(v, v).(4.33)
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We choose d to make the coefficient of B as large as possible. First we simplify
this expression by temporarily setting μ0 = 1/σt so that the coefficient on B can be
expressed as

(4.34)
∑

�∈0∪Υ

(σtμ�)
2δ� −

1

η

∑
�∈0∪Υ

(σtμ� − d)2δ�.

Then we see that d should be chosen to minimize the second sum, which by Lemma
4.2, yields

(4.35) d =
∑

�∈0∪Υ

(σtμ�) δ�,

making use of the fact that
∑

�∈0∪Υ δ� = 1. Note that d ∈ [0, 1] because (σtμ�) ∈ [0, 1].
Substituting d defined by (4.35) into (4.34) yields

(4.36) δ0 +
∑
�∈Υ

(σtμ�)
2δ� −

1

η

⎛⎝(
δ0 +

∑
�∈Υ

(σtμ�)
2 δ�

)
−
(
δ0 +

∑
�∈Υ

(σtμ�) δ�

)2
⎞⎠ .

For convenience, we rewrite (4.36) as

Δ0 −
1

η

(
Δ0 − Δ2

1

)
= Δ0

(
1 − 1

η

)
+

Δ2
1

η
,

where

Δ0 = δ0 +
∑
�∈Υ

(σtμ�)
2δ� and Δ1 = δ0 +

∑
�∈Υ

(σtμ�)δ�.

Note that Lemma 4.2 implies that Δ0 ≥ Δ2
1. Also, (σtμ�)

2 ≤ (σtμ�) ≤ 1 for � ∈ Υ
implies that Δ0 ≤ Δ1 ≤ 1. Hence, we get

(4.37) Δ0 −
1

η

(
Δ0 − Δ2

1

)
= Δ0

(
1 − 1

η

)
+

Δ2
1

η
≥ Δ0

(
1 − 1

η

)
+

Δ2
0

η
.

Lastly, notice that Δ0 ≥ δ0.
Next, using (4.37) and the fact that γ0 = 1 −

∑
�∈Υ γ�, we obtain from (4.32)–

(4.33)

ã(v, v) ≥ [1 − η]A +

[
Δ0

(
1 − 1

η

)
+

Δ2
0

η

]
B + bI(v, v)

≥ [1 − η]A +

[
Δ0 −

Δ0(1 − Δ0)

η

]
B + bI(v, v).

If we set δ = (1 − Δ0) ≤ (1 − δ0), then using Lemma 4.1(iii), we can say

βδ

2
B ≤ β(1 − δ0)

2
B =

β

2

∥∥∥∥ 1
√
σt

PΥv

∥∥∥∥2

≤ β

∥∥∥∥ 1
√
σt

Q−1/2Ω · ∇v +
√
σtPΥΩ · ∇v

∥∥∥∥2

+
β

σt
bI(v, v) = βA +

β

σt
bI(v, v).

This implies

(4.38) ã(v, v) ≥ [1 − η − β]A +

[
(1 − δ) − δ(1 − δ)

η
+

βδ

2

]
B +

[
1 − β

σt

]
bI(v, v),

where β ≥ 0 and η ≥ 0 are to be determined.
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Our choice of β is given by

(4.39) β =
2

2 + δ

(
δ +

δ(1 − δ)

η
− η

)
,

which is found by setting C1 = C2, that is, setting

1 − η − β = (1 − δ) − δ(1 − δ)

η
+

βδ

2
.

Plugging (4.39) into the coefficient on A generates the lower bound

(4.40) C = 1 − η − β =

(
(2 − δ)

(2 + δ)
− δ

2 + δ

(
η +

2(1 − δ)

η

))
.

This is maximized for η =
√

2(1 − δ), which yields

(4.41) C =
(2 − δ) − 2δ

√
2(1 − δ)

2 + δ
.

Note that this is only valid when the corresponding β ≥ 0, that is, (4.41) is valid only
for δ ≥ δc, where δc is the root of

β =
2

2 + δ

(
δ +

δ(1 − δ)√
2(1 − δ)

−
√

2(1 − δ)

)
=

2δ − (2 − δ)
√

2(1 − δ)

2 + δ
= 0.

This root is the only real root of the polynomial

δ3 − 3δ2 + 8δ − 4 = 0.

Numerically we find that δc ≈ 0.6117, implying Cc ≈ 0.1188. We also find numerically
the minimum of C in (4.41) on [δc, 1] to be

(4.42) Cm = min
δ∈[δc,1]

C ≈ 0.06667,

which occurs at δm ≈ 0.7836.
Now, for δ ≤ δc, we set β = 0 and choose η such that

1 − η = (1 − δ) − δ(1 − δ)

η
,

resulting in

η =
δ +

√
4δ − 3δ2

2
,

and, subsequently,

C =
2 − δ −

√
4δ − 3δ2

2
.

Clearly, C is a decreasing function of δ ∈ [0, δc] implying it takes on its smallest value
at δc. As mentioned previously C ≈ 0.1188 for this value of δ.
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We finally complete the proof with a bound on the coefficient of bI(v, v) in (4.38).
The minimization of this term is only considered on [δc, 1] since β = 0 on [0, δc].
Plotting β on [δc, 1] shows that β is an increasing function of δ on this interval implying
β ≤ 2/3. Thus, we have that [1 − β/σt] ≥ 1/3. We finally conclude that

ã(v, v) ≥ C̃e(A + B + bI(v, v)),

where C̃e = Cm ≥ 0.06666 coming from (4.42). Since A ≥
∥∥R−1/2Ω · ∇v

∥∥2
and

2B ≥
∥∥R1/2v

∥∥2
, we get

ã(v, v) ≥ 0.03333 ‖v‖2
V1

,

implying that Ce = 0.03333/2 = 0.01667 from (4.31).

5. Discretization and error bounds. Any finite dimensional subspace of V1

may be used to construct an approximation to the solution of ψ. One approach,
which is a subject of future research, is using a tessellation of the sphere to represent
angular dependence and nonconforming finite elements to describe spatial variability.
However, in this paper, we develop error bounds associated with a PN approximation
in angle and standard H1 conforming finite elements in space. The angular approx-
imation is represented by a truncated expansion of (2.12), which must be of greater
order than the finite sum that represents the scattering kernel (i.e., N ≥ NS). A
finite element approximation of the moments is defined on a triangulation Th of R
into hexahedrals or tetrahedrons.

Let Pk(Th) denote the space of piecewise polynomials of degree ≤ k on Th, let
Πh be the corresponding interpolation operator on Pk(Th), and let the truncation
operator ΠN be defined by

(5.1) ΠN v(x,Ω) :=

N∑
�=0

�∑
m=−�

φ�m(x)Y�m(Ω).

Then the discrete space V h is defined by

(5.2) V h :=

{
vh ∈ V : vh =

N∑
�=0

�∑
m=−�

φh
�m(x), Y�m(Ω); φh

�m(x) ∈ Pk(Th)

}
.

The definition of V h yields the discrete problem: find ψh ∈ V h such that

(5.3) a(ψh, vh) =
〈
R−1 q,LA vh

〉
+ 2bI(g, v

h)

for all vh ∈ V h.
Bounds for the discretization error are obtained by following the procedure out-

lined in [14]. Thus, let the components of Ω ∈ S2 and x ∈ R be denoted by
Ω = (Ω1,Ω2,Ω3), x = (x1, x2, x3), respectively, and let β, γ be a multi-index such

that Dβ
x := ∂|β|

∂
β1
x1 ∂

β2
x2 ∂

β3
x3

, and Dγ
Ω := ∂|γ|

∂
γ1
Ω1

∂
γ2
Ω2

∂
γ3
Ω3

. Recall that the standard norms [1] of

Hk(R) ×H l(S2) and Hk(∂R) ×H l(S2) are given by

‖v‖2
k,l :=

∑
|β|≤k

∑
|γ|≤l

∥∥Dγ
ΩDβ

xv
∥∥ ,

‖v‖2
k,l,∂R :=

∑
|β|≤k

∑
|γ|≤l

∫
∂R

∫
S2

|Dβ
xv|2 dΩdσ.
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Note also the following bounds for the interpolation error (see [4]):

(5.4)
‖v − Πhv‖p,0 ≤ Chk+1−p ‖v‖k+1,0 ∀v ∈ Hk+1(R) ×H l(S2),

‖v − Πhv‖p,0,∂R ≤ Chk+1−p ‖v‖k+1,0,∂R ∀v ∈ Hk+1(∂R) ×H l(S2)

for p ∈ 0, 1. We also define

(5.5) Eh(v) := v − Πhv

and

(5.6) EN (v) := v − ΠNv

for all v ∈ L2(S2 ×R).
To bound the error of the truncated expansion (5.1), we recall that the spherical

harmonics are eigenfunctions of the Laplacian operator on the unit sphere, which
implies

(5.7)
ΔΩY�m(Ω) =

[
1

sin θ
∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂ϕ2

]
Y�m(Ω)

= −l(l + 1)Y�m(Ω)

for l ≥ 0 and m = −l, . . . , 0, . . . , l. Next, for the reader’s convenience, we include
Lemma 4.1 from [14], as it is used throughout the remaining proofs.

Lemma 5.1. For N ≥ 1, |β| ≤ k + 1, and v ∈ V ∩ (Hk+1(R) × H2(S2)) with

v(x,Ω) =
∑∞

�=0

∑�
m=−� φ�m(x)Y�m(Ω), we have the following:

(i) ‖Ω · ∇v‖ ≤
√

3
∑3

i=1

∥∥∥ ∂v
∂xi

∥∥∥ .
(ii)

∥∥Dβ
xφ�m(x)

∥∥2 ≤ 1
[l(l+1)]2

∫
S2 |ΔΩDβ

xv(x,Ω)|2 dΩ.

(iii)
∥∥Dβ

xEN (v)
∥∥ ≤ 2

N+1

∥∥ΔΩDβ
xv

∥∥ .
(iv) bI(v, v) ≤ ‖v‖2

0,0,∂R .

(v) ‖EN (v)‖0,0,∂R ≤ 2
N+1 ‖ΔΩv‖0,0,∂R .

(vi) If, in addition, v satisfies the asymptotic expansion (5.9), then

‖ΠN (Eh(v))‖0,0,∂R ≤ C
1

σt
hk ‖ΔΩφR‖k+1,∂R .

Proof. See the proof in [14].
In the following, we present theorems for the thin regime (without proof) and for

the thick regime with highly anisotropic scattering.
Theorem 5.2 (thin regime). Suppose that N > NS ≥ 1, 0 ≤ σa ≤ σt ≤ 1 and

that ‖·‖V1
is defined as in (3.12). Let ψ ∈ V1 ∩ (Hk+1(R) ×H2(S2)) be the solution

of (4.5), and let ψh be the solution of (5.3) with V h defined by (5.2). Then we have

∥∥ψ − ψh
∥∥
V1

≤ C1

N + 1

(
‖ΔΩψ‖1,0 + ‖ΔΩψ‖0,0,∂R

)
+ C2h

k
(
‖ψ‖k+1,0 + ‖ψ‖0,∂R

)
with C1 and C2 independent of σt and σa.

Proof. See the proof of the isotropic case in [14].
The error bounds for the thick regime require considering the asymptotic limit

defined by σt → ∞. These bounds depend on the asymptotic form of ψ, which itself
depends on assumptions regarding material parameters. For the case of isotropic
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scattering, this limit has been extensively examined, where it is assumed that σa =
ζ/σt, where ζ is bounded independently of σt as σt → ∞ (see [7, 6, 9, 8, 17]). In this
limit, referred to as the diffusion limit, the solution to (2.1) with isotropic scattering
can then be expressed as

ψ(x,Ω) = φD(x) +
1

σt
φR(x,Ω),

with φR bounded independently of σt and the leading-order term φD satisfying a
diffusion equation.

In [10], for anisotropic scattering Larsen and Pomraning presented two different
asymptotic limits for σt → ∞. These two different limits rely on different assumptions
on the degree of anisotropy in the scattering. One is for the case of mildly anisotropic
scattering, and the other is for highly anisotropic scattering. In the following, we only
examine the case of highly anisotropic scattering because the case of mildly anisotropic
scattering yields results identical to Theorem 4.3 of [14].

To define the asymptotic limit, we let ζl and ωl be O(1) constants. Then we
define μ� in terms of these constants as

(5.8) μ� =

{
ζl, 0 ≤ l ≤ NS ,

σt

ωl+1 , l > NS .

Note that with these assumptions, we get that σa = O(1) and

σl =

{ σt−ζl
σt−σa

, 0 ≤ l ≤ NS ,

σtωl

σs(ωl+1) , l > NS .

Under these assumptions, Larsen and Pomraning in [10] illustrated that ψ can be
expressed as

(5.9) ψ(x,Ω) = φ̂D(x,Ω) +
1

σt
φ̂R(x,Ω),

where

φ̂D(x,Ω) :=

NS∑
�=0

�∑
m=−�

φ�m(x)Y�m(Ω)

satisfies the first-order PNS
equations and φ̂R(x,Ω) can be bounded independently of

σt.
Remark. The PNS

equations are a set of (NS + 1)2 differential equations for
(NS + 1)2 unknowns, which are obtained by substituting ψNS

:= ΠNS
ψ for ψ in (2.1)

and setting the resulting equation orthogonal to all spherical harmonics up to order
NS . Furthermore, as was illustrated in [14], the least-squares formulation described
here is nearly identical to a least-squares minimization of the PNS+1 equations.

The two components, φ̂D and φ̂R, of (5.9) are not orthogonal in L2(S2). But we
can rewrite (5.9) such that this condition holds. Note that this condition is employed
in the proof of Theorem 5.3. This new expression is

(5.10) ψ(x,Ω) = φD(x,Ω) +
1

σt
φR(x,Ω),
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where PΣ φR = 0 for Σ = {l ∈ N : l ≤ NS}. Before proving Theorem 5.3, we intro-
duce the notation ‖a‖ � ‖b‖ meaning ‖a‖ ≤ C ‖b‖, where C denotes an arbitrary,
parameter-independent, positive constant.

Theorem 5.3. (diffusive regime with highly anisotropic scattering ) Suppose
that N > NS ≥ 1, 1 ≤ σt < ∞ and that ‖·‖V1

is defined as in (3.12). Let ψ ∈ V1 ∩
(Hk+1(R)×H2(S2)) be the solution of (4.5), and let ψh be the solution of (5.3) with V h

as defined in (5.2) using the scaling operator (4.18). Assuming that ζ� ∈ (ζm, ζM ) and
ω� ∈ (ωm, ωM ) ∀l, where the minimum and maximum terms are O(1) and independent
of σt, and assuming that ψ satisfies the expansion (5.10), then∥∥ψ − ψh

∥∥
V1

≤ C1D1(σt,φR)

σ
1/2
t (N+1)

+ C2D2(σt, φD, φR)hk

with C1 and C2 independent of σt and σa, and

D1(σt, φR) :=
1

σt

3∑
i=1

∣∣∣∣∣∣∣∣ΔΩ
∂φR

∂xi

∣∣∣∣∣∣∣∣ + ‖ΔΩφR‖ +
1

σ
1/2
t

‖ΔΩ φR‖0,0,∂R ,

and

D2(σt, φD, φR) := ‖φD‖k+1,0+‖ΔΩφD‖k+1,0,∂R+
1

σ
3/2
t

‖φR‖k+1,0+
1

σt
‖ΔΩφR‖k+1,0,∂R .

Proof. Combining Céa’s lemma with Theorem 4.4 yields

‖ψ − ψh‖V1
�

(
‖EN (ψ)‖V1

+ ‖ΠN (ψ − Πhψ)‖V1

)
.

Using

‖v‖V1
≤

(
‖v‖2

V + ‖v‖2
0,0,∂R

)1/2

≤ ‖v‖V + ‖v‖0,0,∂R ,

which is obtained from

bI(v, v) ≤
∫
∂R

∫
S2

|v|2 = ‖v‖2
0,0,∂R ,

we have
(5.11)

‖ψ − ψh‖V1
�

(
‖EN (ψ)‖V + ‖EN (ψ)‖0,0,∂R + ‖ΠN (Eh(ψ))‖V + ‖ΠN (Eh(ψ))‖0,0,∂R

)
.

Next, we note that σtEN (ψ) = EN (φR) because of the fact that ψ satisfies (5.10).
ΠNS

(Ω · ∇(EN (φR))) = 0 and ΠNS
(EN (φR)) = 0 because of our our assumptions on

N . Now, we bound the first term of (5.11) as

‖EN (ψ)‖V =
1

σt
‖EN (φR)‖V

� 1

σ
3/2
t

‖ENS
((Ω · ∇) EN (φR))‖ +

1

σ
1/2
t

‖ENS
(EN (φR))‖

� 1

σ
1/2
t

(
1

σt

3∑
i=1

∣∣∣∣∣∣∣∣ ∂

∂xi
EN (φR)

∣∣∣∣∣∣∣∣ + ‖EN (φR)‖
)

� 1

σ
1/2
t (N + 1)

(
1

σt

3∑
i=1

∣∣∣∣∣∣∣∣ΔΩ
∂φR

∂xi

∣∣∣∣∣∣∣∣ + ‖ΔΩφR‖
)
,
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where we used (i) and (iii) of Lemma 5.1 and the fact that (I − ΠNS
) is an L2(S2)

orthogonal projection. We bound the second term of (5.11) according to

‖EN (ψ)‖0,0,∂R =
1

σt
‖EN (φR)‖0,0,∂R ≤ 2

σt(N + 1)
‖ΔΩφR‖0,0,∂R ,

given (v) of Lemma 5.1.
For the third term of (5.11), we first need to introduce ONS

:= ΠNS
(Ω ·∇). Since

σa > 1/σt, we have

||ΠN (Eh(ψ))||V = ||Eh(φD)||V +
1

σt
||ΠN (Eh(φR))||V .

We then say

||Eh(φD)||V � 1

σ
1/2
t

||ENS
((Ω · ∇) Eh(φD))|| + ||ONS

Eh(φD)|| + ||Eh(φD)||

� ||Ω · ∇(Eh(φD))|| + ||Eh(φD)||

�
3∑

i=1

∣∣∣∣∣∣∣∣ ∂

∂xi
Eh(φD)

∣∣∣∣∣∣∣∣ + ||Eh(φD)||

� hk
(
‖φD‖k+1,0 + h ‖φD‖k+1,0

)
� hk ‖φD‖k+1,0

and

||ΠN (Eh(φR))||V � 1

σt
||ONS

PNS+1(Eh(φR))|| + 1

σ
3/2
t

||ENS
((Ω · ∇) ΠNEh(φR))||

+
1

σ
1/2
t

||ΠNEh(φR)||

� 1

σt
||Ω · ∇(Eh(φR))|| + 1

σ
1/2
t

||ΠNEh(φR)||

�
3∑

i=1

1

σt

∣∣∣∣∣∣∣∣ ∂

∂xi
Eh(φR)

∣∣∣∣∣∣∣∣ +
1

σ
1/2
t

||Eh(φR)||

� hk

σ
1/2
t

(
1

σ
1/2
t

‖φR‖k+1,0 + h ‖φR‖k+1,0

)

� hk

σ
1/2
t

‖φR‖k+1,0 .

Subsequently,

||ΠN (Eh(ψ))||V � hk

(
‖φD‖k+1,0 +

1

σ
3/2
t

‖φR‖k+1,0

)
.

Last, we can bound the fourth term of (5.11) according to

‖ΠN (Eh(ψ))‖0,0,∂R � hk ‖ΔΩψ‖k+1,0,∂R � ‖ΔΩφD‖k+1,0,∂R +
1

σt
‖ΔΩφR‖k+1,0,∂R ,

where we have used (iv) of Lemma 5.1.



560 TRAVIS M. AUSTIN AND THOMAS A. MANTEUFFEL

6. Final remarks. In this paper, we have extended the least-squares method
for the linear Boltzmann equation to the case of anisotropic scattering by establishing
uniqueness and existence of the minimization problem (4.5). Furthermore, the ellip-
ticity is with respect to a physically meaningful norm, and the ellipticity constants
are independent of the problem parameters. Using the ellipticity constants, we have
also established error bounds in all three parameter regimes.

Future work consists of examining the least-squares approach with respect to more
complex discretization approaches. Besides spherical harmonics approximations, one
can use tessellations of the sphere as a finite element representation of the angular
dependency. One of the main advantages to this approach is that there is a reduced
coupling among moments as compared to the spherical harmonics approach used here.
For the spatial domain, we plan to investigate nonconforming finite elements so as to
better approximate problems having discontinuous solutions. Lastly, since this work
provides a partial foundation for [5], we hope to provide a complete foundation by
extending the results introduced here to the case of multiple energy groups.
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