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SUMMARY

Adaptive local refinement can substantially improve the performance of simulations that involve
numerical solution of partial differential equations. In fact, local refinement capabilities are one of
the attributes of First-Order System Least Squares (FOSLS) in that it provides an inexpensive but
effective a-posteriori local error bound that accurately identifies regions that require further refinement.
Previous theory on FOSLS established the effectiveness of its local error estimator, but only under
the assumption that the local region is not too ”thin”. This paper extends this theory to the case
of a rectangular domain by showing that the estimator’s effectiveness holds even for certain ”thin”
local regions. Further, we prove that when the approximation satisfies a local saturation property,
convergence of an adaptive local refinement scheme is guaranteed. Copyright c© 2000 John Wiley &
Sons, Ltd.
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1. Introduction

First-Order System Least Squares (FOSLS) is a methodology that can be used as a basis for
optimal discretization and solution of many Partial Differential Equations (PDEs). One of the
important benefits of FOSLS is the natural effective a-posteriori local error indicator provided
by its local functional values. The theory in [1] shows that this estimator is reliable and effective
for a class of PDEs, provided the local region under consideration is not too ”thin” in the sense
that the ratio between the interior diameter and exterior diameters is not small. We lift this
restriction in this paper for the case of a rectangular domain in two dimensions and a special
local region.

To be more specific, consider the unit square depicted in Figure 1, with the potential
refinement region indicated by the ”thin” vertical strip, Ω−, on its left side. Its internal
boundary is denoted by Γ and the complementary right strip is denoted by Ω+. Consider
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2 JOSH NOLTING ET. AL.
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Figure 1. Unit square partitioned into two sub-domains, a thin region, Ω− = (0, h) × (0, 1), and the
remaining domain, Ω+ = (h, 1)× (0, 1). The finite element mesh-size is given by h. The line segment

Γ is interface between Ω− and Ω+. x = h.

an abstract quadratic FOSLS functional, G(u), with the property that its minimum value
is precisely zero and that it is attained by a unique minimizer (which, presumably, is also a
solution to a first-order system of PDEs). Assume that G(u) can be written in terms of its
”element” contributions from Ω− and Ω+ as follows:

G(u) = G−(u) + G+(u). (1)

Our aim is to show that if G−(u) is large compared to G+(u) for some approximation, u, to the
minimizer, then refinement in Ω− alone is enough to reduce G(u) by a substantial amount, no
matter how thin Ω− is. The key here is in the treatment of the error in u. If it consists primarily
of components that are local to Ω− and Ω+ (i. e., that are zero on Γ), then this conclusion
is easy to prove. The difficulty occurs when the error is predominantly ”functional-harmonic”
(”F-harmonic”), by which we mean that it is possibly nonzero on Γ but otherwise minimizes
G(u) in the sense that no other u with the same trace on Γ yields a smaller value of G(u).
Error of this type with a trace that is oscillatory with respect to the scale of the elements in Ω+

may not be substantially reduced by even infinite refinement only in Ω−. Thus, our principal
task is to show that, for such error, G−(u) cannot be substantially larger than G+(u). This
would imply that the refinement decision-making would not be distracted by a relatively large
value of the estimator in Ω− that is due to irreducible error.

We establish this result from three different points of view. We begin with a specific proof of
our assertions in the continuum setting. We follow this with an abstract algebraic proof that
is then applied to the unit square case specified above. We then provide numerical evidence
of our assertions by reporting on numerical tests with the ACE (Accuracy per Computational
cost Efficiency) refinement algorithm developed in [6]. Finally, with the error estimator proofs
in hand, we extend the theory in [1] by allowing arbitrarily thin refinement regions. That is,
on a mesh with mesh size h, the refinement region may have inner diameter h.

The following is restricted to the unit square case introduced above. It should be clear,
however, that the results hold for a general rectangle. Moreover, while the continuum
theory is specific to the refinement structure specified above, the abstract algebraic theory
is considerably more general. It should be fairly easy to confirm its applicability to more
complicated refinement regions and more general domains, although such an extension is
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 3

beyond the current scope presented here.
With the aforementioned theory proved we end by showing a convergence proof for adaptive

local refinement (ALR) schemes based on FOSLS finite elements. If a local saturation condition
is satisfied, these schemes are guaranteed to converge. Although much of the paper is dedicated
to proving that the ”thinness” constraint is unnecessary, the convergence proof is critical to
the viability of ALR schemes that use the local FOSLS functional as the error indicator.

This paper is organized as follows. We provide a brief introduction to FOSLS and its notation
in the next section. The continuum proof is given in Section 3. In Section 4, we develop
an abstract algebraic proof that is then applied to the unit square example specified above.
Section 5 contains numerical results and Section 6 provides a proof of convergence of a FOSLS
adaptive refinement strategy. We conclude with some remarks in Section 7.

2. FOSLS Background

A brief description of the FOSLS finite element method is introduced in this section. For a
more complete description, see [3]. As the acronym FOSLS suggests, a f irst-order system of
equations is solved using least squares techniques. Throughout this paper, PDEs that have
second-order derivatives are considered, so they require conversion into a first-order system.
Since least-squares techniques result in a bilinear form in which the operators in the system of
equations are squared, one benefit of having a first-order system is that the resulting bilinear
form in the variational formulation is, at most, second-order. The condition number of the
associated algebraic system is then order O(h−2), where h is the grid mesh-size.

Assume that the PDE is of the form Lv = g, where L is a system of differential operators,
v is the continuous solution of n variables, and b is the given right hand side. Consider, for
example, the following scalar two-dimensional PDE:

∆v = g in Ω, (2)
v = 0 on ∂Ω, (3)

where v = v(x, y), g = g(x, y), and ∂Ω is the boundary of Ω. The above second-order system
is transformed into the following equivalent first-order system of equations:

U−∇v = 0 in Ω, (4)
∇ ·U = g in Ω, (5)
∇×U = 0 in Ω, (6)

v = 0 on ∂Ω. (7)

Let,

u =
[

v
U

]
. (8)

In general, the original PDE, Lv = g, is transformed into the PDE Lu = f , where L is
the first-order system of differential operators and f is the given right-hand side, such that
Lv = g is equivalent to Lu = f . Because L contains second-order or higher derivatives, m new
variables are defined in u, and Lu = f will contain more equations. In the above example, a
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4 JOSH NOLTING ET. AL.

new variable U was introduced. Since U was introduced as a gradient, its curl is equal to zero,
and we often add this consistent equation. Letting Li be the ith equation of the first-order
system L, then we define

G(u; f) =
M∑

i=1

‖wi(Liu− fi)‖2(0,Ω), (9)

where wi is an appropriate weighting and M is the number of equations in the first-order
system. Typically, wi = 1. However, wi is kept general to allow un-weighting near singularities.
Although other squared norms could be applied in the FOSLS functional, this paper only
considers the sum of L2 norms squared. The minimization problem is then written as

u = arg min
v∈W

G(v; f), (10)

where W is a product of H1 spaces. Since u is a minimizer of the quadratic functional G(v; f),
the variational formulation is given as follows: find u ∈ W , such that

F(u;v) =
M∑

i=1

〈fi,Liv〉wi
, for all v in W, (11)

where < ·, · >wi represents a weighted inner product, and

F(u;v) :=
M∑

i=1

〈Liu,Liv〉wi
. (12)

Existence and uniqueness of u is attained if the bilinear form (12) is continuous and coercive
in a weighted H1 norm:

F(u;v) ≤ Cc‖u‖(w,1,Ω)‖v‖(w,1,Ω) (13)

and

F(u;u) ≥ Ce‖u‖2(w,1,Ω), (14)

respectively.

Definition 1. If F(u;u) is coercive and continuous then the FOSLS formulation is H1-
elliptic.

In what follows, we address the Poisson equation in domains without singularities as our model
problem. Thus, we set wi = 1 and, with inclusion of the curl constant, assume continuity and
coercivity in the standard H1 norm.

3. Continuum Theory

The goal is to show that after solving the discrete problem on a given finite element space, Vh,
there exists no error with large element contributions in one part of the domain, Ω−, relative
to that of its complement, Ω+, that is not amenable to significant reduction by refinement in
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 5

Ω−. Otherwise, the refinement algorithm could possibly concentrate resources strictly in Ω−,
offering no improvement in the accuracy of the approximation. For the continuous proof, we
assume that the global problem has been solved on a uniform grid with mesh-size h. Then,
without loss of generality, we restrict our attention to error that is orthogonal in the F-inner
product, which is denoted below in (15). The F-inner product is often considered an energy
inner product. We further assume that F(u; v) is the scalar bilinear form

F(u; v) = 〈∇u,∇v〉 . (15)

We believe that the following development can be extended to more general problems in which
the bilinear form, F(u; v), corresponds to an H1-elliptic functional for systems of equations.
However, that extension is beyond the scope of this paper. Thus, our assumption on the error
becomes

〈∇E,∇vh〉Ω = 0 for all vh in Vh, (16)

where E = vh−v. For the following proofs, we decompose the error of our FOSLS discretization
into four components. Keep in mind that the FOSLS minimization problem yields

u = arg min
v∈V

G(v; f), (17)

where G(v; f) was defined in the FOSLS background, Section 2. Note that G(vh; f) = G(E; 0).
An F-orthogonal decomposition of E into F-harmonic and F-local components is given by

E(x, y) = H+ η.

To formalize H and η, consider E− := E(x, y) restricted to the region Ω−, and let H− and η−

be the associated error components. We define a set of local functions having support in Ω−.

V− := {u ∈ V : u = 0 on Ω+ ∪ Γ}.
Then,

η− := arg min
u∈V−

G(E − u; 0)

and

H− := arg min
u=E on Ω+∪Γ

GΩ−(u; 0).

For the remainder of the paper we consider F-harmonic and F-local error to be simply
harmonic and local error. Note, infinite refinement of Ω− does not eliminate the harmonic
error component, H−, and completely eliminates η−. There is an analogous definition for the
error components on Ω+. Let E+, H+ and η+ represent the error restricted to the region Ω+.
The harmonic error functions also satisfy Laplace’s equation, ∆H+ = ∆H− = 0, in the interior
of their respective domains and H+ = H− = E on the interface, Γ, and domain boundary ∂Ω.
This yields the following relationships:

〈∇E−,∇E−〉
Ω− =

〈∇H−,∇H−〉
Ω− +

〈∇η−,∇η−
〉
Ω− (18)〈∇E+,∇E+

〉
Ω+ =

〈∇H+,∇H+
〉
Ω+ +

〈∇η+,∇η+
〉
Ω+ (19)

〈∇E,∇E〉Ω =
〈∇E−,∇E−〉

Ω− +
〈∇E+,∇E+

〉
Ω+ . (20)
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6 JOSH NOLTING ET. AL.

Also, applying Green’s theorem yields
〈∇H−,∇η−

〉
Ω− = 0,

〈∇H+,∇η+
〉
Ω+ = 0. (21)

The overall proof has many small interesting aspects, so it will be broken-down into
subsections each describing a specific facet. We first formalize the the problem setup for the
proof.

Hypothesis 1.
〈∇E+,∇E+

〉
Ω+ ¿

〈∇E−,∇E−〉
Ω− (22)

and
〈∇η−,∇η−

〉
Ω− ¿

〈∇E−,∇E−〉
Ω− (23)

are mutually possible.

Notice that (19) and (22) implies
〈∇η+,∇η+

〉
Ω+ ≤

〈∇η+,∇η+
〉
Ω+ +

〈∇H+,∇H+
〉
Ω+ =

〈∇E+,∇E+
〉
Ω+ (24)

¿ 〈∇E−,∇E−〉
Ω− . (25)

The goal of the remainder of this section is to show that if uh is the exact solution on grid
Vh, then Hypothesis 1 is contradictory. In the first subsection, we develop theory with an
assumption that the local error is exactly equal to zero everywhere. Because we cannot
guarantee both F-orthogonality and purely harmonic error, we then extend this theory to
a more general situation. The proofs for some of the theorems and lemmas are shortened to
avoid distraction and maintain a concise paper. For all complete proofs, see [6].

3.1. Case I: Purely Harmonic Error

Let e(x, y) ∈ Ω be a function that is defined by extending an oscillatory function, t ∈ H
1
2 (Γ),

harmonically into Ω− and Ω+. Let ∂Ω be a rectangular closed boundary of Ω. Assume
e(x, y) = 0 for (x, y) ∈ ∂Ω. Then, t is the trace of e on Γ (see Fig. 1). Throughout this
section, the set of oscillatory functions is given by the following definition:

O := {t ∈ H
1
2 (Γ) : ‖t‖(0,Γ) ≤ C1h

1
2 ‖t‖( 1

2 ,Γ)}, (26)

where C1 is a constant independent of h and t. For conciseness later in this section, we also
define a set to capture the properties given for e(x, y).

S :={e ∈ C0(Ω), t ∈ O : (27)

e is a harmonic extension of t into Ω+ and Ω−}. (28)

Since t ∈ H
1
2 (Γ) and t(y = 0) = 0 and t(y = 1) = 0, t has the following sine series expansion:

t =
∞∑
1

ak sin(kπy). (29)
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 7

Then define e+(x, y) (e in Ω+) and e−(x, y) (e in Ω−) as the harmonic extension of the error
with the following Fourier expansions:

e−(x, y) =
∞∑
1

ak sin(kπy)
sinh(kπx)
sinh(kπh)

(30)

e+(x, y) =
∞∑
1

ak sin(kπy)
sinh(kπ(1− x))
sinh(kπ(1− h))

. (31)

The denominators (sinh(·)) in each series force continuity across Γ. We first show that if the
trace of e is oscillatory, then ‖∇e+‖(0,Ω+) cannot be small compared to ‖∇e−‖(0,Ω−).

Theorem 1. Let e ∈ S be decomposed into e+ and e−, representing the extension of t ∈ O
into Ω+ and Ω− respectively, then there exists a constant C2 > 0, independent of h and t, such
that

‖∇e−‖(0,Ω−) ≤ C2‖∇e+‖(0,Ω+).

Proof Define a function r ∈ Ωr := (h, 2h) × (0, 1), as the reflection of e− about Γ. Then r
is harmonic in Ωr. Let φ(x) = (2 − x

h ) for x ∈ (h, 2h) be a cutoff function with support only

Γ

hh

Ωr

Figure 2. Ωr = (h, 2h)× (0, 1). The function r is defined in Ωr ∪ Γ.

in (h, 2h). Multiplying the cutoff function with e+, and noting that r is harmonic in Ωr and
φe+ = r on ∂Ωr \ ∂Ω+, results in the following inequality:

‖∇e−‖(0,Ω−) = ‖∇r‖(0,Ωr) ≤ ‖∇(φe+)‖(0,Ωr). (32)

Using (32) and the triangle inequality we get a bound on the energy (L2-norm of the gradient)
of e−.

‖∇e−‖(0,Ω−) ≤ ‖e+∇φ + (∇e+)φ‖(0,Ωr)

≤ ‖e+∇φ‖(0,Ωr) + ‖φ∇e+‖(0,Ωr)

≤ 1
h
‖e+‖(0,Ωr) + ‖∇e+‖(0,Ωr). (33)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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8 JOSH NOLTING ET. AL.

Therefore, the theorem is proved if 1
h‖e+‖(0,Ωr) ≤ C4‖∇e+‖(0,Ω+) for some constant, C4,

independent of h and t. Many steps are needed to validate the above setting for our scenario.
This is the objective for the rest of this proof.

Since e+ and t are represented by the Fourier expansions given in (29) and (30), respectively,
solving for the square of the L2 norm of e+ in Ωr yields

‖e+‖2(0,Ωr) ≤ h‖t‖2(0,Γ). (34)

From trace theory given in, for example, [7], there exist a constant C3 such that

‖t‖( 1
2 ,Γ) ≤ C3‖e+‖(1,Ω+) = C3(‖e+‖2(0,Ω+) + ‖∇e+‖2(0,Ω+))

1
2 .

Therefore, using the Poincaré inequality (c.f. [5]) yields

‖t‖( 1
2 ,Γ) ≤ C3(c2

1‖∇e+‖2(0,Ω+) + ‖∇e+‖2(0,Ω+))
1
2 ,

≤ c2‖∇e+‖(0,Ω+), (35)

where c2 = C3(c2
1 + 1)

1
2 . Combining (34), (35), and the fact that t is oscillatory yields

‖e+‖(0,Ωr) ≤ h
1
2 ‖t‖(0,Γ) ≤ C1h‖t‖( 1

2 ,Γ) ≤ c4h‖∇e+‖(0,Ω+), (36)

where c3 = C1c2. The proof is completed by combining (33) and (36) to yield

‖∇e−‖(0,Ω−) ≤ c4‖∇e+‖(0,Ω+) + ‖∇e+‖(0,Ωr) ≤ C2‖∇e+‖(0,Ω+), (37)

with C2 = 1 + c3. 2

In order to use Theorem 1, we prove that if the error is F-orthogonal to the grid of mesh-size
h and purely harmonic, then the trace(E) = t along Γ must be oscillatory enough to satisfy

‖t‖(0,Γ) ≤ C1h
1
2 ‖t‖( 1

2 ,Γ). (38)

In order to prove this statement, we first cover some preliminaries. After discussing the
preliminary concepts, a theorem addressing the above oscillatory assumption is developed.

Recall the sine series expansion, t =
∑∞

1 ak sin(kπy). Define H+(x, y) and H−(x, y) as the
harmonic part of the error with Fourier expansions identical to (30) and (31), respectively. For
t to satisfy (38),

∑∞
k=1 a2

k must be less than or equal to C1h
∑∞

k=1 a2
kk. Since E is F-orthogonal

to the space associated with the grid,
〈∇E+,∇vh

〉
Ω+ +

〈∇E−,∇vh

〉
Ω− = 0. (39)

Separating E into harmonic and local components yields
〈∇E+,∇vh

〉
Ω+ +

〈∇E−,∇vh

〉
Ω−

=
〈∇H+,∇vh

〉
Ω+ +

〈∇H−,∇vh

〉
Ω−

+
〈∇η+,∇vh

〉
Ω+ +

〈∇η−,∇vh

〉
Ω− = 0, (40)

for any vh ∈ Vh. Using Green’s first identity [4] and recalling that ∆H+ = ∆H− = 0 on the
interiors of Ω+ and Ω−, respectively, we get

∫

∂Ω+
(n+ · ∇H+)vhds +

∫

∂Ω−
(n− · ∇H−)vhds = −〈∇η,∇vh〉Ω , (41)
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 9

where n+ and n− are the outward unit normal vectors and ∂Ω+ and ∂Ω− are the boundaries
of Ω+ and Ω−, respectively. The boundary conditions on Ω are homogeneous Dirichlet, so vh is
zero along ∂Ω. We are then left with a jump in the normal derivative across Γ. To be precise,
define

f(y) :=
s(

∂

∂x
H

)
|x=h

{
=

(
lim

δx→0+

H−(h− δx, y)−H−(h, y)
−δx

)

−
(

lim
δx→0+

H+(h + δx, y)−H+(h, y)
δx

)
, (42)

to be the jump in the x-derivative of H across Γ. Equality (41) can be written as follows:
∫

Γ

s
∂

∂x
H|x=h

{
vhdy = −〈∇η,∇vh〉Γ for all vh ∈ Vh. (43)

Since f(0) = f(1) = 0, the Fourier expansion for this jump function is given by

f(y) =
s(

∂

∂x
H

)
|x=h

{
=

∞∑

k=1

bk sin(kπy), (44)

where

bk = akkπδk, (45)

with

δk =
[
cosh(kπh)
sinh(kπh)

+
cosh(kπ(1− h))
sinh(kπ(1− h))

]
. (46)

For convenience later, let gk := kπhδk. Before moving on, let us look at some important
characteristics associated with gk. We present two technical lemmas whose proofs appear
in [6].

Lemma 1. For 1 ≤ k ≤ N = 1
h and h ≤ 1

2 , then gk is a monotone non-decreasing sequence,
with

1 ≤ gk ≤ 2π
eπ + e−π

eπ − e−π
=≈ 6.31.

Further, note that δk → 2 as k →∞ and is O(1) for k ≥ N .

Proof See [6].
Let Ih be a one-dimensional piecewise interpolation operator on a grid with mesh-size h.

Let Ih sin(kπy) = sin(kπy) + εk(y) represent the linear interpolant of the kth sine mode on a
grid with mesh-size h. Then, the interpolation error is

εk(y) = Ih sin(kπy)− sin(kπy). (47)

Assume, again, that h = 1
N . We give a sine series expansion for εk(y), which is the interpolation

error:

εk(y) =
∞∑

`=1

rk` sin(`πy).

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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10 JOSH NOLTING ET. AL.

Lemma 2. Let εk(y) = Ih sin(kπy)− sin(kπy). Then, the Fourier expansion coefficients, rk`,
of εk(y) are zero, except for ` = k and ` = 2iN ± k, for i = 1, 2, · · · .
Proof See [6]. For the remainder of this subsection let εk denote εk(y).

Corollary 1. For all j, k ≤ N and j 6= k,

〈εk, εj〉Γ =
1
2

∞∑

`=1

rk` · rj` = 0, for j 6= k. (48)

Proof Corollary 1 is a direct consequence of the zero structure of the coefficients rk` given in
Lemma 2.

Corollary 2. For all j, k ≤ N and j 6= k,
〈
ε′k, ε′j

〉
Γ

= 0. (49)

Proof Since

〈
ε′k, ε′j

〉
Γ

= π2
∞∑

`=1

`2(rk` · rj`),

the zero structure of the coefficients rk` given in Lemma 2 completes the proof. 2

A standard interpolation bound, given in [2], yields a bound on the coefficients rk` as follows:

‖εk‖2(0,Γ) = r2
kk +

∑

`>N

r2
k` ≤ C4h

4k4. (50)

We also have a bound, given in [2], on the semi-norm as follows:

|εk|(1,Γ) = |Ih sin(kπy)− sin(kπy)|(1,Γ) ≤ c1h‖ sin(kπy)‖(2,Γ) ≤ C5hk2. (51)

We take advantage of Lemma 2 by using a special combination of sine interpolants as a test
function, vh. We also want a vh that gives information on the behavior of the trace. A logical
choice is the interpolant of

∑∞
k=1 bk sin(kπy) because the coefficients, bk, will be included. The

interpolant of the partial sum is also in Vh, which is easier to work with for our purpose.
Therefore, we let g(y) :=

∑N
k=1 bkIh sin(kπy), where Ih is a linear interpolation operator on Γ

and let

v̂h =





x
hg(y) when x ≤ h,
(−x

h + 2)g(y) when h < x ≤ 2h,
0 otherwise.

(52)

Lemma 3. Let v̂h be defined in (52). Let q := −〈∇η,∇v̂h〉Γ, from (43). Then,

∞∑

k=1

a2
k ≤ C1h

∞∑

k=1

(a2
kk) + h2|q|,

where C1 is independent of h.
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 11

Proof Since v̂h ∈ Vh, we have 〈f(y), g(y)〉Γ = q. Then, from (42),

〈f(y), g(y)〉Γ =

〈
f(y),

N∑

k=1

bkIh sin(kπy)

〉

Γ

=
N∑

k=1

(b2
k + rkkb2

k) +
N∑

k=1

bk

∑

`>N

rk`b` = −〈∇η,∇v̂h〉Ω . (53)

Rearranging (53) and taking absolute values results in the following inequalities:

N∑

k=1

b2
k ≤

N∑

k=1

|rkk|b2
k +

N∑

k=1

|bk|
∑

`>N

|rk`b`|+ |q|, (54)

=
N∑

k=1

|rkk|b2
k +

N∑

k=1

|bk|
∑

`>N

|rk``|
∣∣∣∣
b`

`

∣∣∣∣ + |q|. (55)

Note, we have multiplied and divided by ` in the second term in (55). Now, switching the
indices in the double sum of inequality (55) and also replacing |rkk| with bound (50) yields

N∑

k=1

b2
k ≤

N∑

k=1

b2
k

√
C4h

2k2 +
∑

`>N

∣∣∣∣
b`

`

∣∣∣∣
N∑

k=1

|bk||rk``|+ |q|. (56)

For k = 1, . . . , N , define

rk = [· · · rk` · · · ], for ` > N, (57)
r̂k = [· · · |rk``| · · · ], for ` > N. (58)

From Lemma 2, rk` is zero whenever rj` is nonzero for j 6= k. Then, we have
〈
rk, rj

〉
`2

= 0
and

〈
r̂k, r̂j

〉
`2

= 0. We also define

β =
[
· · ·

∣∣∣∣
b`

`

∣∣∣∣ · · ·
]

, for ` > N. (59)

Then, the second term on the right-hand side of (56) is bounded by

∑

`>N

∣∣∣∣
b`

`

∣∣∣∣
N∑

k=1

|bk||rk``| =
〈

β,

N∑

k=1

|bk|r̂k

〉

`2

(60)

≤ ‖β‖`2

∥∥∥∥∥
N∑

k=1

|bk|r̂k

∥∥∥∥∥
`2

(61)

= ‖β‖`2

(
N∑

k=1

|bk|2‖r̂k‖2`2
) 1

2

(62)

=

(∑

`>N

(
b`

`

)2
) 1

2
(

N∑

k=1

b2
k

(∑

`>N

r2
k``

2

)) 1
2

(63)
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12 JOSH NOLTING ET. AL.

Thus, (56) becomes

N∑

k=1

b2
k ≤

N∑

k=1

b2
k

√
C4h

2k2 +

(∑

`>N

b2
`

`2

) 1
2

(
N∑

k=1

b2
k

(∑

`>N

(rk``)2
)) 1

2

+ |q|. (64)

Applying bound (51) and rearranging, gives way to

N∑

k=1

b2
k ≤

√
C4h

2
N∑

k=1

b2
kk2 +

(∑

`>N

b2
`

`2

) 1
2

(
N∑

k=1

b2
k|εk|21

) 1
2

+ |q|,

≤
√

C4h
2

N∑

k=1

b2
kk2 +

(∑

`>N

b2
`

`2

) 1
2

(
N∑

k=1

b2
kC2

5h2k4

) 1
2

+ |q|. (65)

Now consider the norm of the trace. Let C6=max{kπhδk, for k ≤ N} and let c5 =
√

C4C
2
6 .

Using Lemma 1, (45) and (65), we have

N∑

k=1

a2
k =

N∑

k=1

[
bkh

(kπh)δk

]2

≤ h2
N∑

k=1

b2
k,

≤
√

C4h
4

N∑

k=1

b2
kk2 +

(∑

`>N

(
b`

`

)2
) 1

2
(

N∑

k=1

b2
kC2

5k4h6

) 1
2

+ h2|q|

≤ c5h
2

N∑

k=1

a2
kk2 +

(∑

`>N

(
b`

`

)2
) 1

2
(

N∑

k=1

b2
kC2

5k4h6

) 1
2

+ h2|q|.

Using an ε−inequality (ab ≤ 1
2a2 + 1

2b2), (45), and Lemma 1, yields

(∑

`>N

(
b`

`

)2
) 1

2
(

N∑

k=1

b2
kC2

5k4h6

) 1
2

≤ 1
2

∑

`>N

(
b`

`

)2

+
1
2

N∑

k=1

b2
kC2

5k4h6,

≤ 1
2

∑

`>N

a2
`π

2δ2
` +

1
2

N∑

k=1

a2
k(C2

6 )C2
5h4k4.

For k ≤ N , 0 < kh ≤ 1; therefore, dividing each term by kh from a sum ranging from 1 → N ,
increases the sum. Also, for ` > N , `h > 1; therefore multiplying by `h in each term of a series
ranging from N + 1 →∞ increases the sum. Let c6 = 1

2C2
6C2

5 . Since δ` ∼ 2, for ` > N , we let
c7 = 1

2π2(max δ2
` ). Putting things back together yields

N∑

k=1

a2
k ≤ c5h

N∑

k=1

a2
kk + c7h

∑

`>N

a2
`` + c6h

N∑

k=1

a2
kk + h2|q|. (66)

Now add
∑

`>N a2
` to the left and h

∑
`>N a2

`` to the right. We obtain
∞∑

k=1

a2
k ≤ C1h

∞∑

k=1

a2
kk + h2|q| (67)
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 13

where C1 = max{c5 + c6, c7 + 1}, which completes the proof. 2

Thus, if the error is F-orthogonal and harmonic, the trace of the error at x = h is oscillatory
in the sense defined above. Finally, we present the main theorem for this section.

Theorem 2. Let E be error that is F-orthogonal to vh, as defined in (39). If E is harmonic
in Ω− and Ω+, and continuous, then there exists a constant D > 0 such that

‖∇E−‖(0,Ω−) ≤ D‖∇E+‖(0,Ω+),

where D is independent of h and E− and E+ represent E restricted to Ω− and Ω+, respectively.

Proof Since |q| = 0 in Lemma 3, the proof follows directly from Theorem 1 and Lemma 3. 2

3.2. Case II: Error Contains Small Local Component

We now look at the case in which the error contains a small local component. First, let us
quantify small local error. We assume that the ratio of the local error in Ω versus the harmonic
component of the error in Ω− is small, that is,

(‖∇η−‖(0,Ω−) + ‖∇η+‖(0,Ω+)

) ≤ c1‖∇H−‖(0,Ω−). (68)

The difficulty in this section is to show that the trace(E) = t still satisfies the oscillatory
assumption even if there exists a small local component. Therefore, we just need to properly
bound |q|in Lemma 3.

Lemma 4. If |q| := | 〈∇η,∇v̂h〉 |, where v̂h is defined in (52) and η satisfies (68). Then, there
exists a constant c2, independent of h, such that

h2|q| ≤ c2h

∞∑

k=1

a2
kk.

Proof Assume that the harmonic error has the Fourier expansion defined in (30) and (31).
We start by calculating the L2-norm of the gradient of the harmonic error in Ω−,

‖∇H−‖(0,Ω−) =

(∫ h

0

∫ 1

0

[ ∞∑

k=1

akkπ

sinh(kπh)
(cos(kπy) sinh(kπx)

+ sin(kπy) cosh(kπx))

]2

dydx




1/2

.

Computing the integral yields

‖∇H−‖(0,Ω−) = c3h
− 1

2

( ∞∑

k=1

a2
kk

h sinh(2kπh)
sinh2(kπh)

) 1
2

, (69)
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14 JOSH NOLTING ET. AL.

For more details, see [6]. Splitting the sum in (69) yields the following bound.

‖∇H−‖(0,Ω−) = c3

(
h−1

N∑

k=1

a2
k

kh sinh(2kπh)
sinh2(kπh)

+
∑

k>N

a2
kk

sinh(2kπh)
sinh2(kπh)

) 1
2

,

≤ c3

(
c4h

−1
N∑

k=1

a2
k + c5

∑

k>N

a2
kk

) 1
2

,

≤ ĉ3

(
h−1

N∑

k=1

a2
k +

∑

k>N

a2
kk

) 1
2

, (70)

where ĉ3 ← c3 max{c4, c5}.
Now bound ‖∇v̂h‖(0,Ω), which only has support in x < 2h. We introduce some new functions

to ease visualization. Since v̂h is symmetric about x = h, we only define u(x, y) and z(x, y)
(below) for x ≤ h:

∂

∂x
v̂h = u(x, y) =

1
h

N∑

k=1

bk(sin kπy + εk(y))

and

∂

∂y
v̂h = z(x, y) =

x

h

N∑

k=1

bk(kπ cos kπy + ε′k(y)).

Then,

‖∇v̂h‖2(0,Ω−∪Ωr) = 2
∫ 1

0

∫ h

0

u2dxdy + 2
∫ 1

0

∫ h

0

z2dxdy. (71)

Integrating the first term in (71) and using the orthogonality of εk’s, as established in
Corollary 1, yields

2
∫ 1

0

∫ h

0

u2dxdy =
2
h

N∑

k=1

b2
k

∫ 1

0

sin2(kπy)dy +
2
h

N∑

k=1

b2
k

∫ 1

0

ε2
k(y)dy

+
4
h

∫ 1

0




N∑

k=1

bk sin(kπy)
N∑

j=1

bjεj(y)


 dy.

After examination of each term on the right-hand side (see [6]), we get the following bound.

2
∫ 1

0

∫ h

0

u2dxdy ≤ c6

h

N∑

k=1

b2
k. (72)
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 15

Integrating the second term in (71) and using Corollary 2 yields

2
∫ 1

0

∫ h

0

z2dxdy =
2h

3

N∑

k=1

b2
k(kπ)2

∫ 1

0

cos2(kπy)dy+

2h

3

N∑

k=1

b2
k

∫ 1

0

[ε′k(y)]2dy+

4h

3

∫ 1

0




N∑

k=1

bk(kπ) cos(kπy)
N∑

j=1

bjε
′
j(y)


 dy

Again, after examination of each term on the right-hand side (see [6]), we get the following
bound.

2
∫ 1

0

∫ h

0

z2dxdy ≤ c7

h

N∑

k=1

b2
k. (73)

Let ĉ7 = (c6 + c7). Then,

‖∇vh‖20,Ω ≤
ĉ7

h

N∑

k=1

b2
k =

ĉ7

h

N∑

k=1

a2
kk2π2δ2

` ≤
ĉ7(πδ̂)2

h2

N∑

k=1

a2
kk, (74)

where δ̂ = max δ` for ` ≤ N .
With bounds on ‖∇vh‖0,Ω and ‖∇H−‖(0,Ω−), we now bound |q|. First, separate |q| into

regions Ω− and Ω+ and then use Cauchy-Schwarz to get

h2|q| = h2| 〈∇η−,∇vh
〉
Ω− +

〈∇η+,∇v̂h

〉
Ω+ |

≤ h2
(‖∇η−‖(0,Ω−) + ‖∇η+‖(0,Ω+)

) ‖∇v̂h‖(0,Ω).

Substituting bound (68) for
(‖∇η−‖(0,Ω−) + ‖∇η+‖0,Ω+

)
yields

h2|q| ≤ h2c1‖∇vh‖(0,Ω)‖∇H−‖(0,Ω−)

Substituting equations (70) and (74) yields

h2|q| ≤ c1πδ̂
√

ĉ7

√
ĉ3

(
h

N∑

k=1

a2
k

) 1
2

(
N∑

k=1

a2
k + h

∑

k>N

a2
kk

) 1
2

.

Letting c8 = c1πδ̂
√

ĉ3ĉ7 and applying an ε-inequality (ab ≤ 1
4p2 a2 +p2b2, ∀p ∈ R) gives way to

h2|q| ≤ c8

4p2

N∑

k=1

a2
k +

c8h

4p2

∑

k>N

a2
kk + c8p

2h

N∑

k=1

a2
kk.

Choosing p such that c9 :=
c8

4p2
< 1 and letting c10 := c8p

2 yields

h2|q| ≤ c9

N∑

k=1

a2
k + c9h

∑

k>N

a2
kk + c10h

N∑

k=1

a2
kk

≤ c9

∞∑
1

a2
k + c11h

∞∑
1

a2
kk,
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16 JOSH NOLTING ET. AL.

where c11 = max {c9, c10}. Finally,

∞∑

k=1

a2
k ≤

c0 + c11

1− c9
h

∞∑

k=1

a2
kk. (75)

Since c9 < 1, the lemma is proved with c2 =
c0 + c11

1− c9
. 2

The main result of this subsection is given in the following theorem.

Theorem 3. Let E be error that is F-orthogonal, as defined in (39). Assume the local
components of E in Ω− and Ω+ are bounded as follows:

(‖∇η−‖(0,Ω−) + ‖∇η+‖(0,Ω+)

) ≤ c1‖∇H−‖(0,Ω−).

If E has a harmonic component H− in Ω− and a harmonic component H+ in Ω+, and if
H− = H+ on Γ, then there exists a constant D > 0, independent of h such that

‖∇H−‖(0,Ω−) ≤ D‖∇H+‖0,Ω+ .

Proof The combination of Theorem 1, and Lemma 3 completes the proof. 2

To summarize, if E is minimum on grid h, then E is oscillatory on any Γ, as stated in (26). If
E is oscillatory, then harmonic error is balance, as concluded in Theorem 3. It is important to
note that the constant D is reasonable on a square domain when η+ and η− are equal to zero.
Also, the constant D depends on the constant c1 when η+ and η− are non-zero. Therefore,
when c1 is large, D is large. Here we assume c1 is sufficiently small to insure a D that is not
too large, however, in Section 6 we address the case for large c1.

The following corollary, which determines a bound on the total energy, completes this
subsection.

Corollary 3. Let H− and H+ be the harmonic components of the error, E, restricted to Ω−

and Ω+, respectively. Let η− and η+ be the local components of E restricted to Ω− and Ω+,
respectively. Assume the local component of E in Ω− is bounded as follows:

‖∇η−‖(0,Ω−) ≤ c3‖∇E−‖(0,Ω−)

for some c3 < 1, independent of h. If

‖∇H−‖(0,Ω−) ≤ D‖∇H+‖0,Ω+ ,

then there exists a constant D̂ > 0, independent of h, such that

‖∇E−‖(0,Ω−) ≤ D̂‖∇E+‖0,Ω+ .

Proof First bound the energy in Ω− of the harmonic error by the energy of the total error in
Ω+:

‖∇H−‖2(0,Ω−) ≤ D2
(‖∇H+‖(0,Ω+) + ‖∇η+‖(0,Ω+)

)2 = D2‖∇E+‖2(0,Ω+).

We also know that

‖∇η−‖2(0,Ω−) ≤ c2
3‖∇E−‖2(0,Ω−) ≤ c2

3

(
‖∇H−‖2(0,Ω−) + ‖∇η−‖2(0,Ω−)

)
.
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FURTHER RESULTS ON ERROR ESTIMATORS FOR LOCAL REFINEMENT WITH FOSLS 17

This implies that

(1− c3)‖∇η−‖2(0,Ω−) ≤ c2
3‖∇H−‖2(0,Ω−).

Now sum the energy in Ω− of the harmonic and local error.

‖∇η−‖2(0,Ω−) ≤
(

c2
3

1− c2
3

)
D2‖∇E+‖20,Ω+

+‖∇H−‖2(0,Ω−) ≤ D2‖∇E+‖20,Ω+

‖∇E−‖2(0,Ω−) ≤ D̂2‖∇E+‖20,Ω+ ,

where D̂2 = D2
(
1 + c2

3
1−c2

3

)
. 2

This corollary is developed for relatively small local error components, thus c3 is bounded
away from 1. The impact of Corollary 3 is described in the following statement. If the local
error in the refinement region is small compared to the total error in the refinement region,
then the total error in the refinement region is small compared to the total error in the whole
domain.

4. Algebraic Theory

This section takes an algebraic approach to establishing sharpness of our error measure. The
aim is to show algebraically that our refinement indicator cannot be distracted by error that
is large but locally irreducible in a subregion. To this end, assume that the problem has
been solved on the current level, a global grid of mesh-size 2h. We are thus able to restrict
our attention to error that is algebraically energy-orthogonal, as shown below, to the space
associated with this level.

< Aw, v >= vtAw = 0, (76)

where A is a linear operator, w and v are vectors, and t denotes the transpose. This algebraic
assumption enables us to define discrete harmonic error as error whose grid-h residuals are
zero in the interior of the refinement region and its complement, that is, the residuals are
nonzero only at the interface between the region and its complement. The discrete error can
then be written as a linear combination of a discrete harmonic and error that is local in the
sense that it is a grid-h vector that is nonzero only in the interior of the refinement region.

In this section, we first develop an algebraic result for the case when the error is exactly
a discrete harmonic. We then extend the result to the case that the error is an approximate
discrete harmonic (nonzero local error). A finite element discretization of a planar boundary
value problem is then explored. Analogous to the continuous case, we have in mind that the
bounded planar domain is partitioned by a closed curve (corresponding to Γ) into two sub-
domains (corresponding to Ω− and Ω+). For the algebraic proof, we consider Γ, Ω−, and Ω+

to be point sets denoted by R̃1, R̃2, and B̃, respectively.

4.1. Algebraic Theory for Discrete Harmonics

Consider an n× n real symmetric positive definite (SPD) matrix, A, whose entries have been
partitioned into point sets R̃1, R̃2, and B̃. Although A is presented with the above generality,
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18 JOSH NOLTING ET. AL.

it is convenient, for this paper, to consider A the FOSLS discretization of the Laplace operator.
Assume that the resulting block representation of Ax is given as follows:

Ax =



R1 0 C1

0 R2 C2

Ct
1 Ct

2 B







x1

x2

y


 ,

where x1, x2, and y are variables at the points in R̃1, R̃2, and B̃, respectively. This matrix
partitioning is analogous to a non-overlapping domain decomposition with 2 sub-domains.
Point sets R̃1 and R̃2 are considered to be interior points; these points have no connections
outside of their respective domains. The interface points between R̃1 and R̃2 are given by
B̃. The entries in blocks C1 and C2 account for the connections from the interiors of the
respective domains to the interface, and the entries in blocks Ct

1 and Ct
2 contain the connections

from the interface to the sub-domains. The interface block is expanded into its finite element
contribution from R̃1 and R̃2 as follows:

B = Bl + Br. (77)

The Schur complement of the interior blocks in A is often used as a tool to determine the
inverse of A. We use it so that the energy in a sub-domain can be computed, where by the
energy of an n-vector, x, we mean 〈Ax, x〉 ≡ xtAx. Let

S = B − Ct
1R−1

1 C1 − Ct
2R−1

2 C2 (78)

denote the Schur complement of the interior blocks in A, which we also write as

S = Sl + Sr, (79)

where

Sl = Bl − Ct
1R−1

1 C1 (80)

and

Sr = Br − Ct
2R−1

2 C2. (81)

Note that the inverses that define these Schur complements are guaranteed to exist because
A is SPD. Furthermore, S is SPD (see Theorem 1.2 in [8]). We now introduce a few auxiliary
matrices. Let nB be the number of points on the interface or, equivalently, the dimension of
B. Matrices defined with script notation have dimensions not related to nB . Let Z be an
nB × nB matrix formed by deleting the even-numbered columns of the identity matrix, where
the column indices start with 1 (as apposed to 0):

Z =




1
0

1
0

. . .
1




.

Z is used below to characterize oscillatory error.
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In what follows, we use the Löwner partial order, U ≥ V , for symmetric matrices, U and V ,
to mean that U−V is nonnegative definite and U > V to mean that U−V is positive definite.
Let T be an nB×nB SPD matrix defined on y; it can be thought of as a one-dimensional finite
element discretization of the Poisson PDE along the interface, B̃. For this general algebraic
proof, we assume there exist constants c0, c1, γ ∈ R+ such that the following hold:

1. Sr ≥ c0T ;
2. B ≤ c1I;
3. ZtT 3Z ≥ γZtTZ.

If A is an SPD matrix resulting from a finite element discretization of the model Poisson PDE
presented in Section 2, then Assumptions 1 and 2 are readily satisfied. If T is constructed as
a one-dimensional finite element discretization of the Poisson PDE with a [−1 2 −1] stencil,
then Assumption 3 is also readily satisfied. For now, consider A and T to be general matrices
satisfying the above conditions and decomposition. In Subsection 4.3, we demonstrate how
this general theory is applied to an actual PDE discretization.

Let u ∈ Rn be a discrete harmonic in the sense that its residual, Au, is 0 in R̃1 and R̃2.
In the continuum theory we exploited the oscillatory nature of the function that defined the
error along the line segment Γ (we denoted this function as the trace of the error on Γ). For
the proof below, we also exploit the notion of an oscillatory trace. Let ūB be an nB-vector
restricted to the points on B̃. We call u oscillatory on B̃ if its restriction to B̃, uB , satisfies
uB = S−1TZv̄ for some v̄ defined on the odd-numbered points of B̃. If T is represented by
the stencil [−1 2 −1], then

SuB = TZ




v1

∗
v2

...
∗

vn
2




=




2v1

−v1 − v2

2v2

...
−vn

2−2 − vn
2−1

2vn
2




Fortunately, as was the case in the continuous setting, this condition follows as a consequence
of the discrete harmonic, u, being energy-orthogonal to the range of an interpolation operator.
This is important because, for actual PDE applications, we are interested in error that is
energy-orthogonal to a given global grid of mesh-size 2h. Interpolation in this setting maps a
vector on a grid with mesh-size 2h to a vector on a grid with mesh-size h, which we assume
has the standard form

P =



P11 P12 P13

P21 P22 P23

0 0 Q


 .

Here, P is an interpolation operator that takes values in the grid-level 2h subspace and maps
them to the grid-level h subspace. Energy orthogonality of u then allows us to conclude that
QT SuB = QT TZv̄ = 0.

We now prove that the energy of u on R̃2 is bounded from below by a positive constant
times the total energy, 〈Au, u〉. This is equivalent to bounding the energy in R̃1 by a
constant times the energy in R̃2. Note that the discrete harmonic property of u implies that
〈Au, u〉 = 〈SuB , uB〉. The energy of u on R̃2 is then defined as 〈SruB , uB〉.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls



20 JOSH NOLTING ET. AL.

Theorem 4. Under Assumptions 1, 2, and 3, any uB in the range of S−1TZ has the property
that

〈SruB , uB〉 ≥ γ

(
c0

c1

)2

〈SuB , uB〉 . (82)

Proof Any uB is in the range of S−1TZ, so (82) is equivalent to

ZtTS−1SrS−1TZ ≥ γ

(
c0

c1

)2

ZtTS−1TZ, (83)

which we now prove.
First, since B−S is SPD, then S ≤ B. Combining this with Assumption 2 (B ≤ c1I) yields

S−1 ≥ c−1
1 I. Thus,

S−1SrS−1 = (Sr)−1/2[(Sr)1/2S−1(Sr)1/2]2(Sr)−1/2 ≥
(

1
c1

)2

Sr,

implying

ZtTS−1SrS−1TZ ≥
(

1
c1

)2

ZtTSrTZ. (84)

Second, applying Assumption 1 (Sr ≥ c0T ) to the right-hand side of (84) yields

ZtTS−1SrS−1TZ ≥
(

c0

c2
1

)
ZT T 3Z. (85)

Third, by Assumption 3 (ZtT 3Z ≥ γZtTZ) we have

ZtTS−1SrS−1TZ ≥ γ

(
c0

c2
1

)
ZT TZ. (86)

Last, Sl = S − Sr being SPD implies S ≥ Sr. Combining this with Assumption 1 gives
T−1 ≥ c0S

−1, thus yielding

T ≥ c0TS−1T. (87)

Using this in (86) yields the result in (83). 2

4.2. Algebraic Theory for Approximate Discrete Harmonics

Now consider the case of small but not necessarily zero local error. For convenience, let
R̃ := R̃1

⋃ R̃2. The block partition of A is then given by

A =
[ R C
CT B

]
,

where CT and C represent the connections from the sub-domains to and from the interface,
respectively. We similarly represent P and PT as follows:

P =
[ P1 P2

0 Q

]
, PT =

[ PT
1 0
PT

2 QT

]
.
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As was the case for the continuum theory, showing that the trace is oscillatory is key. For this
section, we show that an approximate discrete harmonic that is orthogonal in energy to the
range of P must be approximately oscillatory. This means that

u ≈
[ −R−1C

I

]
S−1TZv̄.

We use the P defined above to construct a coarse-grid matrix:

Ac = PTAP =
[ Rc Cc

CT
c Bc

]
.

Assume that this coarse-grid operator gives way to the following relationship between the
Schur complement on the fine-grid and the Schur complement on the coarse-grid:

〈Scw̄c, w̄c〉 ≤ λ 〈SQw̄c, Qw̄c〉 , (88)

where w̄c is an nBc
-vector. Equation (88) is satisfied for the 2D model problem (see [6])

containing the two strip sub-domains depicted in Figure 1.

Theorem 5. Suppose that an n-vector, u, is orthogonal in energy to Range(P) and that it
has a relatively small local component in the sense that

u =
[ −R−1C

I

]
ū +

[
`
0

]
,

where 〈R`, `〉 ≤ ε 〈Au, u〉 for some small ε ∈ R+. Then u is an approximate oscillatory discrete
harmonic in the sense that

u =
[ −R−1C

I

]
S−1TZv̄ + v,

where 〈Av, v〉 ≤ (1 + λ)ε 〈Au, u〉.
Proof See [6].
Since u is an approximate oscillatory discrete harmonic, we use Theorem 4 to bound the

energy in R̃2 from below. We first bound the discrete harmonic component of u in R̃2:

〈Av, v〉 ≤ (1 + λ)ε 〈Au, u〉
⇒ 〈Au, u〉+ 〈Av, v〉 ≤ (1 + λ)ε 〈Au, u〉+ 〈SuB , uB〉+ 〈Av, v〉

⇒ 〈SuB , uB〉 ≥ (1− (1 + λ)ε) 〈Au, u〉 .
Using Theorem 4, we therefore have

〈SruB , uB〉 ≥ γ

(
c0

c1

)2

〈SuB , uB〉 ,

⇒ 〈SruB , uB〉 ≥ Ĉ 〈Au, u〉 , (89)

where Ĉ = γ( c0
c1

)2(1− (1 + λ)ε). Thus, we are left with the energy in R̃2 bounded from below
by a constant times the energy in the whole domain, which was the desired goal.
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4.3. Application to PDEs

Consider now the general case that A results from a conforming finite element discretization of
a PDE on a bounded open domain, Ω ⊂ R2, with rectilinear boundary ∂Ω. Consider a closed
curve, B̄ ⊂ Ω̄, that aligns with element boundaries. Next, assume that A is assembled from a
corresponding finite element discretization of the PDE on two domains, Ω−, Ω+ ⊂ Ω, that B̄
defines. To be more precise, first let Ω− be the sub-domain of R2 that is bounded by B̄, let
Ω+ be the interior of the complement of Ω− in Ω, and let τ = B̄ ∩ Ω (the segment of B̄ that
is not coincident with ∂Ω). The nodal partition is now defined by letting B̃, R̃1, and R̃2 be
the nodes in τ , Ω−, and Ω+, respectively.

As an example, consider a simple model Poisson problem with homogeneous Dirichlet
boundary conditions on a rectangle. We use standard linear elements corresponding to a
uniform (n + 1)× (n + 1) grid h of triangles, with n + 1 an even positive integer (to facilitate
coarsening by a factor of two). The partitioning geometry is slab-like, defined by letting τ be a
conforming vertical line segment, {y = 2kh}∩Ω, for some positive integer k < (n+1)/2, and R̃1

and R̃2 the corresponding respective left and right rectangular subregions of Ω with common
boundary τ . Note that this discretization results in the usual five-point stencil corresponding
to A, thus yielding

B = T + 2I,

where T is the matrix defined on B̃ (the nodes in τ) that corresponds to the three-point stencil
[−1 2 −1] and I is the identity matrix on B̃. We are thus led to make the following choices for
the decomposition in (77):

Br = Bl =
1
2
T + I.

Note that this choice corresponds to the individual discretization of the Laplacian on each
slab, that is, 1

2T + I is the contribution to B from the elements abutting the left (right) side
of τ .

Assumptions 1 and 2, from the previous subsection, are now easily verified. To confirm
Assumption 3, let T = 1

2T and note that

T 3 =
1
8




14 −14 6 −1
−14 20 −15 6 −1
6 −15 20 −15 6 −1
−1 6 −15 20 −15 6 −1

. . . . . . .
. . . . . . .

. . . . . . −1
. . . . −15 6

. . −15 20 −14
−1 6 −14 14




.
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We then compute

ZtT 3Z =
1
8




14 6
6 20 6

6 20 6
. . .

. . .
6 20 6

6 14




and

ZtTZ =
1
2




14
20

.
.

.
20

14




. (90)

It is then easy to see by Gerschgorin’s theorem that Assumption 3 is satisfied for γ ≤ 1
7 , since

all of the eigenvalues of ZtT 3Z − 1
7ZtTZ are nonnegative.

5. Numerical Results

We now test the impact of the theory developed in the previous sections by numerically
applying our refinement algorithm [6] to a problem that is simple enough to focus on the results
we have developed. Although the error that we describe below is very specific, this example
illustrates the importance of the theory presented in the previous sections. This example also
helps to validate the findings of the theory. We show that with a scenario consistent to that
presented in the previous sections, if the refinement algorithm lead us to only refine on one
side of an oscillatory trace, significant reduction of the functional was not achieved. However,
even when one side of an oscillatory trace is very ”thin”, the refinement algorithm chooses to
refine elements on both sides of the trace, and therefore significantly reduces the functional.

With Ω a square partitioned as in Subsection 4.3, we seed the FOSLS functional with a purely
harmonic error defined by extending a nonzero trace on the line segment x = h harmonically
into x < h and x > h. We assume an idealized FOSLS functional defined as the squared H1

seminorm of the error. In other words, we are minimizing ‖∇(e(x, y)− eh(x, y))‖20,Ω, where

e(x, y) =

{
sin(16πy) sinh(16πx)

sinh(π) when y ≤ h,

sin(16πy) sinh(16π(1−x))
sinh(16π(1−1/16)) when y > h,

h = 1/16, and boundary conditions are homogeneous Dirichlet.
Three key questions arise. First, where is the local FOSLS functional large? Second, does

refinement substantially decrease the functional value if there is only refinement to the left of
x = h? Last, does the algorithm mark the proper elements for refinement?
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Figure 3. Functional values after solving minimization problem on a grid with mesh size h = 1
16

. The
darker the element the larger the functional value.

To answer the first question, we simply plot the functional values. It is easy to see by looking
at Figure 3 that the local functional values are largest for elements located just to the left and
right of the line x = h, as our theory asserted.

Since the error is hrmonic and oscillatory, we expect that refining strictly in the region to
the left of x = h reduces the functional marginally, at best. We test this assumption by first
locally refining 2 elements in the region to the left of the line x = h. We then increase the the
number of elements refined to 4, 8, and 16.
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Figure 4. The functional values are given for refinement of different numbers of elements. The two
plots represent the actual computed functional versus the anticipated functional.

Figure 4 shows that, even when all of the elements to the left of x = h are locally refined,
there is no reduction in the functional. When we start refining directly to the right of x = h,
the functional starts to drop and, by the time we refine 32 elements, the reduction in the
functional is similar to the anticipated value.

The final question is answered by looking at the plot of the mesh after local refinement.
Figure 5 shows that the refinement algorithm (described in [6]) marks the optimal (if work is
ignored and equations are solved exactly) number and location of elements to refine for effective
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Figure 5. Finite element mesh after one level of local adaptive refinement. The original mesh-spacing
is h. Local refinement occurs on both sides of x = h.

functional reduction. For this example optimal first implies that refining more elements would
not significantly decrease the global functional. Second, since the elements that were refined
contributed the identical reduction in the global functional, no specific element is less important
to refine.

6. Convergence

In this section, we use the theorems in Section 3 and 4 to show convergence for adaptive
refinement schemes that use the FOSLS functional as the local error indicator (for example,
see [6]).

We first introduce some new notation. Let eh := u − uh, where u is the exact solution to
a specified PDE and uh is the FOSLS discrete solution. Then G(eh; 0) = G(uh; f) denotes
the value of the FOSLS functional at the discrete solution on level h. For ease of notation,
let G(eh) = G(eh; 0). Then GΩ−(eh) denotes the squared functional norm restricted to the
refinement region, Ω−. Consider, as in the continuum theory, the F-orthogonal decomposition

eh = η− + η+ +H,

where η− and η+ are local errors in Ω− and its complement, Ω+, respectively, and H is “Ω-
harmonic” in the sense that it is F-orthogonal to any errors local to Ω− or Ω+. Also consider
the F- orthogonal decomposition for the h/2-grid:

e(h/2) = η−(h/2) + η+
(h/2) +H(h/2), (91)

where η−(h/2) and η+
(h/2) are the best h/2- Ω− and Ω+-local approximations to η− and η+,

respectively, and H(h/2) is F-orthogonal to η−(h/2) or η+
(h/2). Let

δ−(h/2) = η− − η−(h/2), (92)

δ+
(h/2) = η+ − η+

(h/2), (93)

and

δH(h/2) = H−H(h/2). (94)
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We now show that schemes that use the FOSLS functional as the local error indicator are
guaranteed to converge if the following condition is satisfied.

Conditions 1. There exists a constant ζ < 1, independent of h, such that

G(eh − δ−(h/2)) = G(η− − δ−(h/2)) ≤ ζG(η−). (95)

Condition (95) implies that local refinement in Ω− results in reduction of the local error, η−.
This property is defined as local saturation for this paper. We now show that convergence is
guaranteed if the above condition is satisfied.

Theorem 6. If condition (95) is satisfied, then there exists constants ε and µ such that
(G(η+) + G(H+)

) ≤ ε
(G(η−) + G(H−)

)
(96)

and

G(eh − δ−(h/2)) ≤ µG(eh), (97)

where ε and µ are independent of h and strictly less than 1.

Proof This theorem is beneficial in showing convergence when ε is not arbitrarily small. We
proceed through the proof with this in mind. Consider the following two cases:

• G(H−) ≤ (c1ĉ + D̂)G(H+),
• G(H−) ≤ 1

c1
(G(η−) + G(η+)).

The constants ĉ and D̂ are determined in the proof of Theorem 3. The constant c1 is chosen so
that case 1 and/or 2 is valid. If c1 is small or zero relative to the harmonic error in a possible
refinement region, then the first bullet is valid, as determined in Section 3. It is important
to note that D̂ does not depend on h and depends largely on the shape of the domain. The
second bullet covers the situation in which c1 is large. This implies that the local error is large
in a possible refinement region.

We first prove Theorem 6 applying the first bullet. Let D = c1ĉ + D̂. The local saturation
condition and the first bullet above yields

G(eh − δ−(h/2)) ≤ ζG(η−) + G(η+) + (1 + D)G(H+)

≤ ζG(η−) + G(η+) + (1 + D)(G(H+) + G(η+)). (98)

Thus, using equation (96) yields the following desired result

G(eh − δ−(h/2)) ≤ ζG(η−) + ε(1 + D)(G(H−) + G(η−)), (99)

≤ (ζ + ε(1 + D))(G(H−) + G(η−)), (100)
≤ (ζ + ε(1 + D))G(e). (101)

Letting µ = (ζ + ε(1 + D)) completes this part of the proof. Notice that reasonable values for
ε are obtained if D is not too large.

Now we utilize the second bullet. Let ĉ1 = 1
c1

. The second bullet above and the local
saturation condition yields

G(eh − δ−(h/2)) ≤ ζG(η−) + ĉ1

(G(η−) + G(η+)
)

+ G(η+) + G(H+)

≤ (ζ + ĉ1)G(η−) + (1 + ĉ1)G(η+) + G(H+). (102)
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Finally, applying equation (96) yields

G(eh − δ−(h/2)) ≤ (ζ + ĉ1)G(η−) + ε(1 + ĉ1)(G(H−) + G(η−))

≤ ((ζ + ĉ1) + ε(1 + ĉ1))G(η−) + ε(1 + ĉ1)G(H−)

≤ ((ζ + ĉ1) + ε(1 + ĉ1))
(G(η−) + G(H−)

)

≤ ((ζ + ĉ1) + ε(1 + ĉ1))G(eh). (103)

Letting µ = ((ζ + ĉ1) + ε(1 + ĉ1)) completes this part of the proof. In the end, whether local
error in the refinement region is small or large relative to the harmonic error in that region,
we guarantee convergence.

7. Conclusion

Under certain assumptions, we proved that using the local FOSLS functional as a
local error indicator does not lead to strict refinement of elements exhibiting error
that is large but locally irreducible. This, on its own, serves as an important
result, but we further applied our findings to make an overall statement concerning
guaranteed convergence of an adaptive local refinement scheme applied to a FOSLS
discretization. To this end, if the marked elements encompass a certain percentage
of the error and the local saturation property is satisfied, convergence is guaranteed.
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