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NUMERICAL CONSERVATION PROPERTIES OF

H(DIV )-CONFORMING LEAST-SQUARES FINITE ELEMENT

METHODS FOR THE BURGERS EQUATION

H. DE STERCK†‡ , THOMAS A. MANTEUFFEL†§ , STEPHEN F. MCCORMICK†¶, AND

LUKE OLSON†‖

Abstract. Least-squares finite element methods (LSFEMs) for the inviscid Burgers equation
are studied. The scalar nonlinear hyperbolic conservation law is reformulated by introducing the
flux vector, or the associated flux potential, explicitly as additional dependent variables. This refor-
mulation highlights the smoothness of the flux vector for weak solutions, namely f(u) ∈ H(div,Ω).
The standard least-squares finite element procedure is applied to the reformulated equations using
H(div)-conforming finite element spaces and a Gauss-Newton nonlinear solution technique. Numer-
ical results are presented for the one-dimensional Burgers equation on adaptively refined space-time
domains, indicating that the H(div)-conforming finite element methods converge to the entropy weak
solution of the conservation law. The H(div)-conforming LSFEMs do not satisfy a discrete exact
conservation property in the sense of Lax and Wendroff. However, weak conservation theorems that
are analogous to the Lax-Wendroff theorem for conservative finite difference methods are proved for
the H(div)-conforming LSFEMs. These results illustrate that discrete exact conservation in the sense
of Lax and Wendroff is not a necessary condition for numerical conservation, but can be replaced by
minimization in a suitable continuous norm.
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tion, nonlinear hyperbolic conservation laws, weak solutions
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1. Introduction. We consider finite element (FE) methods of least-squares (LS)
type [7] for the scalar nonlinear hyperbolic conservation law

H(u) := ∇ · f(u) = 0 Ω, (1.1)

u = g ΓI ,

on a domain Ω ⊂ R
d with boundary Γ. The inflow boundary, ΓI , is the part of

the domain boundary where the characteristic curves of (1.1) enter the domain. The
outflow boundary, ΓO, is defined by ΓO = Γ\ΓI . Variable u is the conserved quantity,
f(u) is the flux vector, and g is the specified boundary data on ΓI . Flux vector f(u)
is a nonlinear function of u, and we require the components, fi(u), of f(u) to be
Lipschitz continuous:

∃ K s.t. |fi(u1) − fi(u2)| ≤ K |u1 − u2| ∀ u1, u2, i = 1, . . . , d. (1.2)

Nonlinear hyperbolic conservation laws allow for weak solutions u that contain
discontinuities. It is well-known that finite difference schemes that do not satisfy an
exact discrete conservation property may converge to a function that is not a weak
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solution of the conservation law [19, 20, 18, 26]. In [19], Lax and Wendroff show
that if finite difference schemes do satisfy an exact discrete conservation property,
and if they converge to a function boundedly almost everywhere (a.e.), then the
function is guaranteed to be a weak solution of the conservation law. The exact
discrete conservation property of Lax and Wendroff for the numerical approximation,
uh, reads

∮

∂Ωi

n · f(uh) dl = 0 ∀ Ωi, (1.3)

where ∂Ωi is the boundary of computational cell Ωi, n is the normal to the boundary,
and f is a consistent numerical flux function. It follows immediately that exact discrete
conservation property (1.3) holds for any discrete subdomain Ωs that is an aggregate
of computational cells Ωi, due to exact numerical flux cancellation at discrete cell
interfaces. Since Lax and Wendroff established their important weak conservation
result, exact discrete conservation property (1.3) has de facto been considered a strong
requirement for numerical schemes for hyperbolic conservation laws [20, 18, 26], and
numerical schemes that satisfy it have since been called conservative schemes.

Hou and Lefloch [15] analyzed the behavior of non-conservative finite difference
schemes, and conclude that they can converge to the solution of an inhomogeneous
conservation law that contains a Borel source term, thus explaining the deviation
from the correct weak solution. On the other hand, the Lax-Wendroff theorem only
states that, for a numerical approximation, exact conservation at the discrete level is
a sufficient condition for convergence to a weak solution, and not a necessary con-
dition. In this paper, we introduce two new finite element methods (FEM) for the
inviscid Burgers equation that are based on LS minimization of the L2 norm of the
conservation law. The first method does not impose an exact discrete conservation
property, but we show that if the method converges to a function in the L2 sense,
then it must be a weak solution. This illustrates that exact discrete conservation is
not a necessary condition for convergence to a weak solution. The second method
imposes a pointwise exact conservation property for the flux vector that is, in a sense,
stronger than the exact discrete conservation property of Lax and Wendroff, and we
show convergence to a weak solution for this method as well.

The least-squares finite element methods (LSFEMs) proposed incorporate a novel
approach that reformulates the conservation law in terms of the flux vector variable
or its assocated flux potential. These reformulations enable a choice of finite element
spaces for the unknown associated with the flux vector that conforms closely to the
H(div)-smoothness of the flux vector. Hence, we call the resulting finite element
methods H(div)-conforming. Here, H(div,Ω) is the Sobolev space of vector functions
with square-integrable divergence. The LS approach to be presented can in principle
be applied to general domains in multiple spatial dimensions and can be combined
with a time-marching strategy, but here we choose to restrict our methods to space-
time domains with one spatial dimension (1D). In the 1D space-time setting, Ω ⊂ R
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in (1.1), ∇ = (∂x, ∂t), and g in (1.1) comprises both initial and boundary conditions
on the inflow boundary of the space-time domain. We present numerical results for
the 1D inviscid Burgers equation, for which the generalized flux vector is given by
f(u) = (u2/2, u).

The numerical results demonstrate convergence, for the Burgers equation, of our
H(div)-conforming LSFEMs to a function, û, in the L2 sense. The numerical results
also indicate that û is an entropy weak solution of conservation law (1.1). We prove
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weak conservation properties of our methods, namely, that if uh converges to û, then
û is a weak solution of (1.1). This theoretical result for LSFEMs is equivalent to the
Lax-Wendroff conservation result for numerical schemes that satisfy exact discrete
conservation property (1.3) [19]. The FE convergence of our LSFEMs, namely, the
L2 convergence of uh to û, and the equivalence of our LS potential method to an H−1

formulation, will theoretically be analyzed elsewhere (see [21] for a discussion in the
context of linear hyperbolic partial differential equations (PDEs)).

Our H(div)-conforming LSFEM approach is clearly different from the numerical
methods that are typically considered for nonlinear hyperbolic conservation laws. Fi-
nite volume methods (see, e.g., [20, 18, 26] and references therein), and more recently
also streamline-upwind Petrov-Galerkin (SUPG) and discontinuous Galerkin (DG) fi-
nite element methods (see, e.g., [18, 11] and references therein), have turned out to
be highly successful for simulating hyperbolic conservation laws. These techniques
generally use approximate Riemann solvers that are based on upwind discretization
ideas combined with nonlinear flux limiters, and have reached high levels of sophis-
tication. Both finite volume methods and DG finite element methods satisfy the
discrete conservation property of Lax and Wendroff [11]. The LSFEM approach [7]
finds the optimal solution within the finite element space, measured in the L2 operator
norm, and has several attractive properties. It produces symmetric positive definite
(SPD) linear systems, which are well-suited for iterative methods, and it provides a
natural, sharp a posteriori error estimator which can be used for efficient adaptive
refinement. LSFEMs are widely used for elliptic PDEs [7], but have only recently
been introduced for hyperbolic PDEs [5, 6, 16, 25]. They have not been applied
to the H(div)-conforming reformulation we introduce in this paper, and the weak
conservation properties of LSFEMs have not been analyzed theoretically.

This paper is structured as follows. Relevant Sobolev space notation is introduced
first. In the next section, the H(div)-smoothness of the flux vector is discussed in
the context of weak solutions, and an H(div)-conforming reformulation of nonlinear
hyperbolic conservation laws is presented. In Section 3, the H(div)-conforming refor-
mulation of the conservation law is posed as a least-squares minimization problem.
Numerical results for the Burgers equation are presented in Section 4 that indicate
convergence of the H(div)-conforming LSFEMs to an entropy weak solution of the
conservation law. In Section 5, weak conservation theorems are proved for the H(div)-
conforming LSFEMs that are equivalent to the Lax-Wendroff theorem for numerical
schemes that satisfy an exact discrete conservation property [19]. In the final section
of the paper we formulate our conclusions and point to future work.

1.1. Nomenclature. Given domain Ω ⊂ R
2, denote by C1(Ω) the space of func-

tions that are continuously differentiable on the closure of Ω. The space of bounded
functions on Ω is denoted by L∞(Ω). The space of square integrable functions on
Ω is denoted by L2(Ω), with the associated L2 inner product of functions u and v
given by 〈u, v〉0,Ω and the L2 norm of function u by ‖u‖0,Ω. Sobolev space H1(Ω)
consists of L2 functions that have square integrable partial derivatives of first order,
with associated inner product 〈u, v〉1,Ω, norm ‖u‖1,Ω, and seminorm |u|1,Ω. We also
consider Sobolev spaces Hs(Ω) of fractional and negative orders (i.e., s ∈ R), with
associated inner product 〈u, v〉s,Ω and norm ‖u‖s,Ω (see [2]). All of these function
spaces are analogously defined on domain boundary Γ, or any part thereof.

The Sobolov space of square integrable vector functions with square integrable
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divergence, is defined by

H(div,Ω) := {w ∈ L2(Ω)2 | ∇ · w ∈ L2(Ω)}. (1.4)

The H(div) norm of vector function w is defined by

‖w‖2
div,Ω := ‖w‖2

0,Ω + ‖∇ · w‖2
0,Ω. (1.5)

Additional function spaces with specific boundary conditions are defined below as
needed. Throughout the paper, c is a generic constant that may differ at every
occurrence.

2. Flux vector and flux potential reformulations of nonlinear hyper-

bolic conservation laws.

2.1. Smoothness of the generalized flux vector. We first discuss H(div)-
smoothness of the flux vector in the context of weak solutions of (1.1). Classical
solutions of (1.1) are functions u ∈ C1(Ω) that satisfy (1.1) pointwise. A weak solution
of (1.1) is defined as follows.

Definition 2.1 (Weak solution). Assume that u ∈ L∞(Ω). Then u is a weak
solution of (1.1) iff

−〈f(u),∇φ〉0,Ω + 〈n · f(g), φ〉0,ΓI
= 0 ∀ φ ∈ C1

ΓO
(Ω),

where C1
ΓO

(Ω) = {φ ∈ C1(Ω) : φ = 0 on ΓO}.
Remark 2.2. Definition 2.1 is a slight generalization of the weak solution def-

inition for the Cauchy problem as given in [14], generalized to a domain with inflow
boundary ΓI and outflow boundary ΓO.

Following Godlewski and Raviart [14], we restrict our consideration of weak solu-
tions to the class of so-called ‘piecewise C1’ functions. These functions are C1, except
at a finite number of smooth curves across which the functions, or their derivatives,
may have jump discontinuities. This case covers many problems of practical interest.
Note that these weak solutions u ∈ H1/2−ε(Ω) for all ε > 0. As a consequence of
Lipschitz continuity (1.2), the components of the flux vector, fi(u), i = 1, 2, are in
H1/2−ε(Ω) as well. We also require that boundary data g for (1.1) be in H1/2−ε(ΓI).

Weak solutions of (1.1) that are piecewise C1 may be characterized in terms of the
smoothness of the generalized flux vector and Sobolev space H(div). This can easily
be established formally using the following theorem from [14], and a classical lemma
that characterizes piecewise C1 vector functions of H(div) in terms of continuity of
the vector component normal to any smooth curve.

Theorem 2.3 ([14], Theorem 2.1, p. 16). Assume that u ∈ L∞(Ω) is a piecewise
C1 function. Then u is a weak solution of (1.1) iff
(1) u satisfies (1.1) pointwise away from the curves of discontinuity and
(2) Rankine-Hugoniot relation [f(u)]Γ · n = 0 is satisfied along the curves of disconti-
nuity Γ.
Here, n is a unit normal on curve Γ and [w]Γ · n is a difference in the normal vector
components across Γ.

Lemma 2.4. Assume that the vector components of w are piecewise C1 functions.
Then w ∈ H(div,Ω) iff [w]Γ · n = 0 a.e. on any smooth curve, Γ, in Ω.

Proof. Follows directly from the definition,

∇ · w = lim
V→0

∮

w · n dl

V
,
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applied to a small volume along any smooth curve, Γ, in Ω.
The following theorem then allows us to characterize the smoothness of the gen-

eralized flux vector, f(u), for a piecewise C1 weak solution, u, of (1.1), namely that
f(u) ∈ H(div,Ω).

Theorem 2.5 (H(div)-smoothness of the generalized flux vector). Assume that
u ∈ L∞(Ω) is a piecewise C1 function. Then u is a weak solution of (1.1) iff
‖∇ · f(u)‖2

0,Ω = 0 (which implies f(u) ∈ H(div,Ω)) and ‖u− g‖2
0,ΓI

= 0.

Proof. ⇒ Assume that u is a piecewise C1 weak solution. It follows from
Theorem 2.3 and Lemma 2.4 that f(u) ∈ H(div), and then also that ‖∇· f(u)‖2

0,Ω = 0

and ‖u− g‖2
0,ΓI

= 0.

⇐ Conversely, ‖∇·f(u)‖2
0,Ω = 0 implies that f(u) ∈ H(div) and, according to Lemma

2.4, this means that [f(u)]Γ ·n = 0 a.e. on any smooth curve, including along surfaces
of discontinuity. Equalities ‖∇ · f(u)‖2

0,Ω = 0 and ‖u − g‖2
0,ΓI

= 0 also imply that u
satisfies (1.1) pointwise away from the surfaces of discontinuity. Then, according to
Theorem 2.3, u is a weak solution of (1.1).

Remark 2.6. Condition [w]Γ · n = 0 of Lemma 2.4, with w = f(u) and Γ the
shock curve, corresponds to the classical Rankine-Hugoniot relation. As an example,
consider a straight shock with speed s, shock normal direction in the x, t-plane n =
(1,−s), and generalized flux vector f(u) = (f(u), u), with f(u) the usual spatial flux
function. Then condition [f(u)]shock · n = 0 gives [(f(u), u)]shock · (1,−s) = 0, or
[f(u)]shock = s [u]shock, which is the well-known Rankine-Hugoniot relation [20].

Remark 2.7. The special case of intersecting shocks is also covered by Theorem
2.5. At the shock intersection point, ∇ · f(u) is not defined pointwise, and a Rankine-
Hugoniot condition is not satisfied because the shock normal is not defined. However,
f(u) ∈ H(div,Ω) and ‖∇ · f(u)‖2

0,Ω = 0 still hold.

2.2. Flux vector reformulation. We reformulate (1.1) in terms of the flux
vector variable w as

F (w, u) :=

[

∇ · w
w − f(u)

]

= 0 Ω, (2.1)

n · w = n · f(g) ΓI ,

u = g ΓI .

2.3. Flux potential reformulation. Letting ∇⊥ = (−∂t, ∂x), note that ‖∇ ·
f(u)‖0,Ω = 0 implies f(u) = ∇⊥ψ for some ψ ∈ H1(Ω). We can thus rewrite (1.1) as

G(ψ, u) := ∇⊥ψ − f(u) = 0 Ω, (2.2)

n · ∇⊥ψ = n · f(g) ΓI ,

u = g ΓI .

Function ψ is the flux potential associated with the divergence-free generalized flux
vector. This approach bears similarity to potential formulations that are used in fluid
dynamics and plasma physics.

Remark 2.8. The flux potential formulation can be generalized to dimensions
higher than d = 2. Scalar potential ψ would need to be replaced by a vector potential,
which is the pre-image of the divergence-free generalized flux vector, f(u), in the de
Rham-diagram [1, 4, 24]. The de Rham-diagram is also instructive for the derivation
of conforming vector finite element spaces in higher dimensions [4].
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Remark 2.9. Both reformulations (2.1) and (2.2), explicitly bring to the forefront
the H(div)-smoothness of the generalized flux function and allow us to choose finite
element spaces that closely match this smoothness, as discussed in the next section.
Also, the differential part of the reformulated equations is linear, with the nonlinearity
shifted to the algebraic part of the equation where it may be treated more easily.

2.4. Boundedness of the Fréchet derivative operators for the reformu-

lations. We solve the nonlinear systems (2.1) and (2.2) using a Newton approach
applied to the L2 norm of the nonlinear systems. In the Newton procedure, a general
nonlinear system, T (v) = 0, is solved by solving a sequence of linearized equations:

T (vi) + T ′(vi)(vi+1 − vi) = 0, (2.3)

where T ′(vi)(r) is the Fréchet derivative at iterate vi in direction r. It is well-known
that if ‖T ′(v∗)‖ = ∞ at the solution, v∗, of T (v) = 0, then the basin of attraction of
Newton’s method may be only {v∗}. Convergence proofs for Newton’s method usually
assume that T ′(v) is Lipschitz continuous in a neighborhood of v∗ [12]. An illustrative
example is the scalar algebraic function s(x) = |x|1/3, for which Newton’s iteration
is xi+1 = −2 xi and the basin of attraction is just {0}. An unbounded Fréchet
derivative at solution v∗ implies that the function cannot be represented by a linear
approximation around v∗. It is said that the function is not linearizable around v∗ in
this case. In what follows, we show that reformulated equations (2.1) and (2.2) are
linearizable around discontinuous solutions, whereas the original formulation, (1.1),
is not.

For system (2.1), the Fréchet derivative of nonlinear operator F (w, u) at initial
guess (w0, u0) in direction (w1 − w0, u1 − u0) is given by

F ′(w0, u0)(w1 − w0, u1 − u0) =

[

∇· 0
I −f ′(u0)

]

·
[

w1 − w0

u1 − u0

]

. (2.4)

Lemma 2.10. Fréchet derivative operator F ′(w0, u0) : H(div,Ω) × L2(Ω) →
L2(Ω) is bounded: ‖ F ′(w0, u0) ‖0,Ω ≤

√
1 +K2, where K is the Lipschitz constant of

(1.2), and the norm on H(div,Ω)×L2(Ω) is given by ‖(w, u)‖ = max(‖w‖div,Ω, ‖u‖0,Ω).

Proof.

‖ F ′(w0, u0) ‖2
0,Ω = sup

b∈H(div,Ω),v∈L2(Ω)
‖(b,v)‖=1

‖ F ′(w0, u0)(b, v) ‖2
0,Ω

= sup
b∈H(div,Ω),v∈L2(Ω)

‖(b,v)‖=1

‖ ∇ · b ‖2
0,Ω + ‖ b − f ′(u0)v ‖2

0,Ω

≤ sup
b∈H(div,Ω),v∈L2(Ω)

‖(b,v)‖=1

‖ ∇ · b ‖2
0,Ω + ‖ b ‖2

0,Ω +K2 ‖ v ‖2
0,Ω

= 1 +K2.

Here we used

|f ′(u0)v| ≤ K|v| a.e.,

which follows directly from Lipschitz continuity (1.2).
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For system (2.2), the Fréchet derivative of nonlinear operator G(ψ, u) at initial
guess (ψ0, u0) in direction (ψ1 − ψ0, u1 − u0) is given by

G′(ψ0, u0)(ψ1 − ψ0, u1 − u0) =
[

∇⊥ −f ′(u0)
]

·
[

ψ1 − ψ0

u1 − u0

]

. (2.5)

Lemma 2.11. Fréchet derivative operator G′(ψ0, u0) : H1(Ω) × L2(Ω) → L2(Ω)
is bounded: ‖ G′(ψ0, u0) ‖0,Ω ≤

√
1 +K2, where K is the Lipschitz constant of (1.2),

and the norm on H1(Ω) × L2(Ω) is given by ‖(ψ, u)‖ = max(‖ψ‖1,Ω, ‖u‖0,Ω).

Proof. Analogous to the proof of Lemma 2.10.

Remark 2.12. The Fréchet derivative of conservation law operator H(u) in (1.1)
at initial guess u0 is given by

H ′(u0)(v) = ∇ · (f ′(u0) v). (2.6)

Fréchet derivative operator H ′(u0) : H1/2−ε(Ω) → L2(Ω), with u0 ∈ H1/2−ε(Ω), is
unbounded for most cases of flux vector f(u) and initial guess u0. Indeed, in most
cases

‖ H ′(u0) ‖0,Ω = sup
v∈H1/2−ε(Ω)
‖v‖1/2−ε,Ω=1

‖ H ′(u0)(v) ‖0,Ω

= sup
v∈H1/2−ε(Ω)
‖v‖1/2−ε,Ω=1

‖ ∇ · (f ′(u0) v) ‖0,Ω

= ∞,

because, in general, (f ′(u0) v) /∈ H(div) for u0, v ∈ H1/2−ε(Ω). For example, it is
easy to see that for the Burgers equation, with f(u) = (u2/2, u), ∀ u0 ∈ H1/2−ε(Ω),
for almost every v ∈ H1/2−ε(Ω) we have (f ′(u0) v) /∈ H(div). In Appendix A, it is
shown that a Newton LSFEM based directly on (1.1) does not converge.

3. H(div)-conforming least-squares finite element methods. In this sec-
tion, we describe how the general LSFE methodology [7] can be applied to the refor-
mulations of (1.1) presented above.

3.1. H(div)-conforming LSFEM. LSFEM for solving (2.1) consists of mini-
mizing LS functional

F(w, u; g) = ‖∇ · w‖2
0,Ω + ‖w − f(u)‖2

0,Ω + ‖n · (w − f(g))‖2
0,ΓI

+ ‖u− g‖2
0,ΓI

(3.1)

over finite-dimensional subspaces Wh × Uh ⊂ H(div,Ω) × L2(Ω). Let

(wh
∗ , u

h
∗) = arg min

wh∈Wh,uh∈Uh

F(wh, uh; g). (3.2)

We treat (3.2) by linearizing equations (2.1) around (wh
0 , u

h
0 ), minimizing an LS func-

tional based on the linearized equations, and iteratively repeating this procedure with
(wh

0 , u
h
0 ) replaced by the newly obtained approximations until convergence. This ap-

proach is, in general, called the Gauss-Newton technique for nonlinear LS minimiza-
tion [12]. The resulting weak equations are given in the following problem statement.
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Problem 3.1 (Gauss-Newton H(div)-conforming LSFEM).
Given (wh

0 , u
h
0 ) ∈ Wh × Uh, find wh ∈ Wh and uh ∈ Uh s.t.

〈∇ · wh,∇ · vh〉0,Ω + 〈wh − f(uh0 ) − f ′(uh0 )(uh − uh0 ),vh〉0,Ω
+〈n · (wh − f(g)),n · vh〉0,ΓI

= 0 ∀ vh ∈ Wh,

〈wh − f(uh0 ) − f ′(uh0 )(uh − uh0 ),−f ′(uh0 )(sh)〉0,Ω
+〈uh − g, sh〉0,ΓI

= 0 ∀ sh ∈ Uh.

A full Newton approach could alternatively be considered, in which nonlinear weak
equations are derived from minimization of the nonlinear LS functional, followed by
a linearization of the nonlinear weak equations [12]. However, we only consider the
Gauss-Newton approach here for simplicity.

For the finite element spaces, we choose Raviart-Thomas vector finite elements of
lowest order (RT0) [9, 4] on quadrilaterals for the flux vector variable wh and standard
continuous bilinear finite elements for uh [9]. The RT0 vector finite elements, which
have continuous normal vector components at element edges, are H(div)-conforming:
RT0 ⊂ H(div,Ω).

3.2. Potential H(div)-conforming LSFEM. LSFEM for solving (2.2) consists
of minimizing LS functional

G(ψ, u; g) := ‖∇⊥ψ − f(u)‖2
0,Ω + ‖n · (∇⊥ψ − f(g))‖2

0,ΓI
+ ‖u− g‖2

0,ΓI
(3.3)

over finite-dimensional subspaces Ψh × Uh ⊂ H1(Ω) × L2(Ω). Let

(uh∗ , ψ
h
∗ ) = arg min

ψh∈Ψh,uh∈Uh

G(ψh, uh; g). (3.4)

Using the same Gauss-Newton approach as above, the resulting weak equations are
given in the following problem statement.

Problem 3.2 (Potential Gauss-Newton H(div)-conforming LSFEM).
Given (ψh0 , u

h
0 ) ∈ Ψh × Uh, find ψh ∈ Ψh and uh ∈ Uh s.t.

〈∇⊥ψh − f(uh0 ) − f ′(uh0 )(uh − uh0 ),∇⊥φh〉0,Ω +

〈n · (∇⊥ψh − f(g)),n · ∇⊥φh〉0,ΓI
= 0 ∀ φh ∈ Ψh,

〈∇⊥ψh − f(uh0 ) − f ′(uh0 )(uh − uh0 ),−f ′(uh0 )(sh)〉0,Ω +

+〈uh − g, sh〉0,ΓI
= 0 ∀ sh ∈ Uh.

For the finite element spaces, we choose standard continuous bilinear finite elements
on quadrilaterals both for ψh and uh [9].

Remark 3.3. Note that the divergence-free subspace of RT0 is spanned by ∇⊥ψh,
where ψh is a bilinear function. The two H(div)-conforming methods are thus closely
related.

Remark 3.4. The flux vector approximation, ∇⊥ψh, is pointwise a.e. divergence-
free on every grid. In this sense, the potential H(div)-conforming method imposes an
exact discrete conservation constraint that is stronger than Lax-Wendroff conserva-
tion condition (1.3). However, flux vector approximation f(uh) does not satisfy this
pointwise exact discrete conservation property because f(uh) = ∇⊥ψh is only weakly
enforced.
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Remark 3.5. For the Burgers equation in space-time domains, ∇⊥ψ = (−∂tψ, ∂xψ) =
(f(u), u), which means that −∂tψh is a numerical approximation of f(u), and ∂xψ

h is
a numerical approximation of u. For these approximations, ∇ · ∇⊥ψh = 0 pointwise
a.e. So if one insists on having an approximation for u that is stictly conservative
in a discrete sense, then ∂xψ

h provides such an approximation, together with the ap-
proximation −∂tψh for f(u). For the approximation uh, ∇ · (f(uh), uh) = 0 does not
hold in any discrete sense.

Remark 3.6. It is important to note that care should be taken in choosing the
finite element spaces for Problems 3.1 and 3.2. This is related to the fact that the LS
functionals, F(w, u; 0) in (3.1) and G(ψ, u; 0) in (3.3), do not bound ‖u‖0,Ω, and are
thus not uniformly coercive w.r.t. ‖u‖0,Ω (see [21]). As is shown in Section 5, the
functionals are coercive w.r.t. the H−1 norm of ∇ · f(u), but this fact does not imply
L2 convergence of uh, as ‖∇ · f(u)‖−1,ΓO,Ω does not bound ‖u‖0,Ω. For example, the
choice of piecewise constant elements for uh results in solutions with high-frequency
oscillations. When a continous piecewise linear space is chosen for uh, however, the
high-frequency oscillations are eliminated and L2 convergence of uh is obtained for the
Burgers equation. For this choice of FE spaces, the functional bounds the L2 error.
Numerical results indicating convergence of the methods for the Burgers equation are
presented in Section 4, but a theoretical convergence proof remains open. In future
work, we plan to investigate whether the LSFE methods proposed in this paper for the
Burgers equation can be extended to more general hyperbolic conservation laws. FE
convergence of our LSFEMs applied to general conservation law systems, namely, L2

convergence of uh to a function û, remains a topic for further study. In the present
paper, we limit theoretical developments to the numerical conservation properties of
methods (3.1) and (3.2) for nonlinear problems, as discussed in Section 5.

3.3. Error estimator and adaptive refinement. LSFEMs provide a natural
a posteriori local error estimator given by the element contribution to the functional.
For example, for a linear PDE, Lu = f , the value of the functional can be rewritten
in terms of error eh = uh − u∗, with uh the current approximation, and u∗ the exact
solution, as follows:

F(uh; f) = ‖Luh − f‖2
0,Ω

= ‖Luh − Lu∗‖2
0,Ω

= ‖L(uh − u∗)‖2
0,Ω

= ‖Leh‖2
0,Ω. (3.5)

The LS functional value thus gives a local a posteriori error estimator that can be
used for adaptive refinement. The numerical convergence results presented in Section
4 for the Burgers equation indicate that functional (3.5) bounds the L2 error, such
that adaptive refinement based on the functional also controls L2 error. See [3] for a
detailed discussion on the sharpness of the error estimator and on adaptive refinement
strategies. In the numerical simulation results below, we apply adaptive refinement
to Burgers flow solutions in a global space-time domain. We start out with the whole
space-time domain covered by a single finite element cell and successively refine. The
cells with functional density above a certain user-defined treshold are marked for
refinement in the next level. The functional density is the functional value over an
element divided by the area. Quadrilateral cells that need to be refined are divided into
four smaller quadrilateral cells. We base the error estimation on the full nonlinear
functional, which can easily be evaluated. We refine after Newton convergence is
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achieved on a given level, so that the value of the nonlinear functional is close to
the value of the functional of the linearized equations. Adaptive refinement based
on a functional density strategy is inexpensive, straightforward to implement, and
amenable to parallelism. Although we achieve good performance using this approach,
a detailed study of the adaptive algorithm is beyond the scope of this paper. A
perhaps more optimal refinement strategy is outlined in [3]. Also, the results reported
below are preliminary in that we do not attempt to separate the locally generated
error from the error propagating along the characteristic. The performance we see is,
nevertheless, promising.

4. Numerical results. Here, we present numerical results for ourH(div)-conforming
Gauss-Newton LSFEMs on test problems for Burgers’ equation involving shocks and
rarefaction waves. We investigate the solution quality in terms of smearing, oscil-
lations, and overshoots and undershoots at discontinuities. We numerically study
L2 convergence of uh to a function û, and convergence of nonlinear functionals
F(wh, uh; g) and G(ψh, uh; g). That is, we confirm that ‖uh−u‖2

0,Ω → 0, F(wh, uh; g) →
0, and G(ψh, uh; g) → 0 as h→ 0, and we estimate the rate of convergence. We denote
the rates of convergence of the square of the L2 error and the nonlinear functionals
by α. For example, for the squared L2 error of approximation uh, we assume

‖uh − u‖2
0,Ω ≈ O(hα). (4.1)

This implies that α can be approximated between successive levels of refinement by

‖uh − u‖2

‖u2h − u‖2
≈

(

1

2

)α

. (4.2)

The theoretical optimal convergence rate of the squared L2 error for solutions with
discontinuities is α = 1.0, i.e. ‖uh − u‖2

0,Ω ≈ O(h), or ‖uh − u‖0,Ω ≈ O(h1/2). This
can be seen easily by considering any interpolant (e.g., piecewise constant, continuous
piecewise linear, or piecewise quadratic) with shock width proportional to h, see also
[23]. Convergence properties of the Gauss-Newton procedure are also discussed. In
the case of solutions with discontinuities, it is important to establish that uh converges
to a weak solution of (1.1) with the correct shock speed. In the case of problems with
non-unique weak solutions, e.g. rarefaction wave problems, we study whether uh con-
verges to the so-called entropy weak solution, which is the unique weak solution that
is stable against arbitrarily small perturbations. This is also the weak solution that
satisfies an entropy inequality and can be obtained as the vanishing viscosity limit
of a parabolic regularization of (1.1) with a viscosity term [20]. Finally, we inves-
tigate whether adaptive refinement, based on the LS error estimator, is an effective
mechanism to counter smearing at shocks, and discuss adaptivity on full space-time
domains. We combine adaptivity with grid continuation (also called nested iteration
or full multigrid) for the Gauss-Newton procedure, and investigate numerically the
number of Newton iterations that are required on each grid level to obtain convergence
up to discretization error.

4.1. Results for H(div)-conforming LSFEM. We present numerical results
for the H(div)-conforming LSFEM described in Problem 3.1, applied to the inviscid
Burgers equation, for which f(u) = (u2/2, u) in (1.1). We consider the following model
flow:
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Fig. 4.1. H(div)-conforming LSFEM, Example 4.1 (Single Shock): uh solution contours on
grids with 162, 322, and 642 quadrilateral elements.
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Fig. 4.2. H(div)-conforming LSFEM, Example 4.1 (Single Shock): uh solution profile on a
grid with 322 quadrilateral elements.

Example 4.1 (Single Shock, Figure 4.2). The space-time flow domain is given
by Ω = [0, 1] × [0, 1], with initial and boundary conditions

u(x, t) =

{

0.5 if t = 0,

1.0 if x = 0.
(4.3)

The unique weak solution of this problem consists of a shock propagating with shock
speed s = 3/4 from the origin, (x, t) = (0, 0). Conserved quantity u(x, t) = 1.0 on the
left of the shock and u(x, t) = 0.5 on the right of the shock .

Figure 4.1 shows contours of the numerical solution, uh, for Example 4.1 on
grids with decreasing h. The correct shock speed is obtained and the solution does
not show excessive spurious oscillations. There are, however, small overshoots and
undershoots that appear to be generated where the shock interacts with the outflow
boundary. The amplitude of these overshoots and undershoots does not grow when the
grid is refined. In our globally coupled space-time solution these slight oscillations
seem to propagate in the direction of the characteristic curves, in accordance with
the signal propagation properties of hyperbolic PDEs. These effects are reduced as
the grid is refined. Figure 4.2 shows the uh solution profile, which illustrates the
well-known fact that LS methods introduce substantial smearing at shocks [5, 6, 16,
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Fig. 4.3. H(div)-conforming LSFEM, Example 4.1 (Single Shock): Newton convergence. Left:
‖uh

i+1
−uh

i ‖
2
0,Ω

Newton update convergence. Linear convergence can be observed. Right: ‖uh−u‖2
0,Ω

error convergence. Discretization error is reached after just two or three Newton iterations.

25]. However, Table 4.1 shows that both the overshoots and undershoots, as well
as the smearing, disappear in the L2 sense as the grid is refined. The numerical
approximation converges to exact solution u as h→ 0, and the rate of convergence of
‖uh − u‖2

0,Ω approaches the optimal value α = 1.0 as grids are refined. Table 4.1 also

shows that nonlinear functional F(wh, uh; g) converges as h→ 0, with α approaching
1.00.

N ‖ · ‖2
0,Ω α F α

16 5.96e-3 1.89e-2

32 3.81e-3
0.58

9.25e-3
1.03

64 2.36e-3
0.69

4.56e-3
1.02

128 1.38e-3
0.77

2.26e-3
1.01

256 7.66e-4
0.85

1.12e-3
1.01

Table 4.1
H(div)-conforming LSFEM, Example 4.1 (Single Shock): convergence rates on successive grids

with N2 elements; 20 Newton iterations on each grid level.

The left panel of Figure 4.3 shows that the Gauss-Newton method converges
linearly on each grid, in accordance with the theory [12]. The right panel of Figure 4.3
shows that the discretization error on each grid level is reached after only two or three
Newton iterations (indicated by the flatness in the error graphs at higher iterations),
suggesting that grid continuation strategies may require only a few Newton iterations
per grid level, as is confirmed below.

It is clear that numerical approximation uh does not satisfy an exact discrete
conservation property of type (1.3). Neither does the flux vector approximation wh.
From w = (w1, w2) = (f(u), u), it is apparent that wh1 is an approximation of f(u),
and wh

2 is an approximation of u. Figure 4.4 shows that ∇ · wh does not vanish
exactly in a discrete sense for our H(div)-conforming LSFEM, which illustrates that
our method does not impose exact discrete conservation (1.3) of wh in the sense
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Fig. 4.4. H(div)-conforming LSFEM, Example 4.1 (Single Shock): ∇ · wh on a grid with 322

quadrilateral elements.

of Lax and Wendroff [19]. Note, however, that ∇ · wh is very small (the scale of
Figure 4.4 is 10−3) and convergence of nonlinear functional F(wh, uh; g) implies that
‖∇ · wh‖0,Ω → 0 as h → 0. Note also that ∇ · wh is constant in each cell since the
RT0 vector finite elements are used for flux variable w.

4.2. Results for potential H(div)-conforming LSFEM. For the potential
H(div)-conforming LSFEM described in Problem 3.2, we study a more extensive set
of model flows, with both shocks and rarefactions. First, consider Example 4.1, the
single shock problem, for the potential H(div)-conforming LSFEM combined with
adaptive refinement. A grid continuation procedure for the nonlinear solver is also
used, in which the initial solution for the Newton procedure on a given grid level is
obtained by interpolation from the next coarser level.

Figure 4.5 shows the uh solution profile for the shock problem. Observe that
the correct weak solution with the right shock speed is obtained, and that adaptive
refinement based on the LS error estimator effectively captures and refines the shock,
thus counteracting the LS smearing. Figure 4.6 shows the solution profile for potential
variable ψh, which is continuous.

Table 4.2 shows that the convergence rates and error magnitudes for the adap-
tively refined grids are comparable to those of the uniformly refined grids. Squared L2

error ‖uh−u‖2
0,Ω and nonlinear functional G(ψh, uh; g) converge to zero as h→ 0. We

denote by Gint and Gbdy the interior and boundary terms of functional G(ψh, uh; g).
The convergence rates, α, appear to approach 1.0 in all cases, with the squared L2

error approaching this rate from below and the interior functional from above.

Figure 4.7 shows a detailed view of the number of nodes used in the adaptive
algorithm versus the uniform refinement algorithm. Notice that the ratio of adaptive
nodes over refined nodes decreases as the grid is refined. Finally, Figure 4.8 shows
that the nonlinear grid continuation strategy is very efficient: nonlinear Newton con-
vergence can be reached with only one or two Newton iterations per grid level.

To corroborate our claims of weak solution convergence, we now consider a prob-



14 De Sterck, Manteuffel, McCormick, Olson

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0.4

0.6

0.8

1

1.2

1.4

t

u

x

 u

Fig. 4.5. Potential H(div)-conforming LSFEM, Example 4.1 (Single Shock): solution uh on
an adaptively refined grid with a resolution of h = 1/64 in the smallest cells.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x
t

 ψ

Fig. 4.6. Potential H(div)-conforming LSFEM, Example 4.1 (Single Shock): potential variable
ψh.

lem with two shocks merging into one.
Example 4.2 (Double Shock, Figure 4.9). The space-time flow domain is given

by Ω = [0, 2] × [0, 1] with the following initial and boundary conditions

u(x, t) =











1.5 if t = 0, x < 0.5,

0.5 if t = 0, x > 0.5,

2.5 if x = 0.

(4.4)

This results in two shocks that merge into one. The two original shocks emanate from
(x, t) = (0, 0) and (x, t) = (0, 0.5) and travel at speeds s = 2 and s = 1, respectively.
The shocks merge at (x, t) = (1, 0.5), and the resulting shock exits the domain at
(x, t) = (1.75, 1) with shock speed s = 3

2 .
Table 4.3 shows convergence of the squared error in the L2 sense and convergence

of the functional, i.e., ‖uh−u‖2
0,Ω → 0 and G(ψh, uh; 0) → 0 as h→ 0. Again, we find

that the convergence rates, α, approach 1.0 as grids are refined. This agrees with our
findings for the single shock case. Figure 4.9 confirms convergence to the correct weak
solution. The shocks merge at the correct location (indicated by the dotted lines) and
the resulting single shock exits at the correct location.

We now consider a rarefaction problem for the potential H(div)-conforming LS-
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N Nodes ‖ · ‖2
0,Ω α G α Gint α Gbdy α

4 25 1.33e-2 1.26e-2 3.41e-3 9.15e-3

8 81 8.68e-3
0.62

5.92e-3
1.08

1.38e-3
1.30

4.54e-3
1.01

16 289 5.72e-3
0.60

2.82e-3
1.07

5.50e-4
1.33

2.26e-3
1.01

32 1089 3.70e-3
0.63

1.35e-3
1.05

2.25e-4
1.29

1.13e-3
1.00

64 4225 2.30e-3
0.69

6.61e-4
1.03

9.68e-5
1.22

5.64e-4
1.00

128 16641 1.34e-3
0.78

3.26e-4
1.02

4.43e-5
1.13

2.82e-4
1.00

256 66049 7.32e-4
0.87

1.62e-4
1.01

2.13e-5
1.06

1.41e-4
1.00

4 25 1.33e-2 1.26e-2 3.41e-3 9.15e-3

8 66 8.36e-3
0.67

5.95e-3
1.08

1.41e-3
1.27

4.54e-3
1.01

16 168 5.46e-3
0.62

2.82e-3
1.08

5.61e-4
1.33

2.26e-3
1.01

32 438 3.57e-3
0.61

1.36e-3
1.06

2.28e-4
1.30

1.13e-3
1.00

64 1200 2.19e-3
0.71

6.63e-4
1.04

9.84e-5
1.21

5.64e-4
1.00

128 3258 1.25e-3
0.80

3.27e-4
1.02

4.50e-5
1.13

2.82e-4
1.00

256 9058 6.72e-4
0.90

1.63e-4
1.01

2.16e-5
1.06

1.41e-4
1.00

Table 4.2
Potential H(div)-conforming LSFEM, Example 4.1 (Single Shock): convergence rates on suc-

cessive grids with h = 1/N in the smallest cells; 30 Newton iterations on each grid level. Top
section: uniform grid refinement. Bottom section: adaptive grid refinement.
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Fig. 4.7. Potential H(div)-conforming LSFEM, Example 4.1 (Single Shock): Node usage on
the adaptive grids compared with the uniform grid. Left: Direct comparison of the number of nodes
used at each level. • corresponds to uniform refinement and � to adaptive refinement. Right: ♦,
ratio of adaptive to uniform nodes used on level k.

FEM.

Example 4.3 (Transonic Rarefaction, Figure 4.10). The space-time flow domain
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Fig. 4.8. Potential H(div)-conforming LSFEM, Example 4.1 (Single Shock): ‖uh − u‖2
0,Ω

error convergence (left) and functional convergence (right) on N × N grids with N = 2k, where
k = 2, . . . , 8. A grid continuation strategy is used, and Newton convergence can be obtained with
just a few Newton iterations on each level.

N ‖ · ‖2
0,Ω α G α Gint α Gbdy α

16 2.50e-1 6.26e-2 3.06e-2 3.09e-2

32 1.42e-1
0.82

2.87e-2
1.10

1.34e-2
1.19

1.52e-2
1.02

64 7.82e-2
0.86

1.38e-2
1.05

6.27e-3
1.10

7.57e-3
1.01

128 4.17e-2
0.91

6.85e-3
1.02

3.07e-3
1.03

3.77e-3
1.00

256 2.19e-2
0.93

3.42e-3
1.00

1.54e-4
1.00

1.88e-3
1.00

Table 4.3
Potential H(div)-conforming LSFEM, Example 4.2 (Double Shock): convergence rates on suc-

cessive grids with N2 elements; 30 Newton iterations on each grid level.
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Fig. 4.9. Potential H(div)-conforming LSFEM, Example 4.2 (Double Shock): uh solution
contours using 2562 quadrilateral elements.
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is given by Ω = [−1.0, 1.5]×[0.0, 1.0] with the following initial and boundary conditions

u(x, t) =











−0.5 if t = 0, x < 0;

1.0 if t = 0, x ≥ 0;

−0.5 if x = −1.

(4.5)

In this example, the initial discontinuity at the origin rarefies in time. There are
infinitely many weak solutions, but the unique entropy solution is a rarefaction wave
with u(x, tc) increasing linearly in x, at a given time tc, from u = −0.5 to u = 1.0,
between straight characteristic lines t = −x/2 and t = x.

This rarefaction is called transonic [20], because the characteristic velocity, f ′(u) =
u, transits through zero within the rarefaction. Many higher-order numerical schemes
that are based on approximate Riemann solvers, or, equivalently, upwind or numerical
dissipation ideas, fail to obtain the entropy weak solution for transonic rarefactions.
Higher-order approximate Riemann solvers often do not capture the transonic rarefac-
tion wave at cell interfaces appropriately, and so-called entropy fixes are necessary,
as is, e.g., the case for the Roe scheme [20]. It is, thus, important to verify whether
our H(div)-conforming LSFEMs obtain the entropy solution in the case of transonic
rarefactions.

Figure 4.10 shows the uh solution profile for the transonic rarefaction flow, con-
firming that the entropy solution is indeed obtained. We have to emphasize that
convergence to the entropy solution has only been verified for a limited number of
test problems. It remains to be seen whether the entropy solution will be obtained
for all cases, or whether an entropy fix is necessary. Table 4.4 shows that squared L2

error ‖uh − u‖2
0,Ω and nonlinear functional G(ψh, uh; g) converge to zero as h → 0.

The convergence rates for the squared L2 error and for the interior functional appear
to be approaching α = 1.5 and α = 2.00, respectively.

N ‖ · ‖2
0,Ω α G α Gint α Gbdy α

16 1.27e-2 4.56e-2 4.99e-3 4.07e-2

32 4.79e-3
1.41

2.19e-2
1.06

1.55e-3
1.69

2.03e-2
1.00

64 1.74e-3
1.46

1.06e-2
1.04

4.66e-4
1.73

1.02e-2
1.00

128 6.21e-4
1.49

5.20e-3
1.03

1.37e-4
1.77

5.07e-3
1.00

256 2.20e-4
1.50

2.58e-3
1.02

3.94e-5
1.80

2.44e-3
1.00

Table 4.4
Potential H(div)-conforming LSFEM, Example 4.3 (Transonic Rarefaction): convergence rates

on successive grids with N2 elements; 30 Newton iterations on each grid level.

To conclude this section, we briefly discuss the advantages and disadvantages of
the globally coupled adaptive space-time approach we have explored in our numerical
tests. A clear disadvantage is that the global coupling results in a large nonlinear
system to be solved, with high solution complexity and large memory requirements as
a result. However, efficient adaptive refinement produces nonlinear algebraic systems
that are substantially smaller than those for a uniform grid system with the same
effective resolution (see Table 4.2 and Figure 4.8). Consider the adaptive grid of
Figure 4.5. The grid cells are concentrated in regions where the error would be large.
Considering the refinement of the spatial grids as time progresses, our global space-
time approach automatically takes care of refinement and coarsening. Large timesteps
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Fig. 4.10. Potential H(div)-conforming LSFEM, Example 4.3 (Transonic Rarefaction): solu-
tion uh using 642 quadrilateral elements.

are taken in regions of low error, and small timesteps in the other regions. This means
that the computational effort is distributed naturally in a way that is near-optimal
over the whole space-time domain. This approach becomes more feasible in practice
when the resulting nonlinear algebraic systems can be solved efficiently. In Figure
4.8, we show that, by using grid continuation, the nonlinear systems can be solved
with nearly optimal iteration count, with just one or two Newton iterations per grid
level. Combined with optimally scalable iterative solvers for the linear systems, this
would result in a numerical scheme for which the work per discrete degree of freedom
is bounded. Our present tests use the AMG package of John Ruge [22]. Discussion
of AMG convergence is beyond the scope of the present paper, but we mention that
we already obtain remarkable performance using this black box linear solver. Future
work includes multigrid methods designed specifically for hyperbolic problems. This
could potentially make the globally coupled space-time approach competitive with
explicit time-marching methods in terms of cost/accuracy ratios. It is clear that this
goal has yet to be achieved, but our preliminary results suggest that it is worth further
exploration. We emphasize, however, that the space-time context is not essential for
the H(div)-conforming LSFEMs or their solution or conservation properties, which
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are the main topic of this paper. Indeed, it would be relatively straightforward to
formulate our method on discontinuous timeslabs that are one finite element wide in
the temporal direction, as is, e.g., done for the SUPG method in [17].

5. Weak conservation theorems. In this section, for our H(div)-conforming
LSFEMs, we prove that if uh converges to a function, û, in the L2 sense as h → 0,
then û is a weak solution of the conservation law. This statement for our LSFEMs is
essentially equivalent to the Lax-Wendroff theorem for conservative finite difference
methods [19]. A similar assumption on the convergence of uh to û is made in the
Lax-Wendroff theorem. The assumption that uh converges to û for our LSFEM is
made plausible, for the Burgers equation, by the numerical results of the previous
section, but remains an assumption that needs to be proved theoretically in future
work; see also [21].

First, we relate the notion of weak solution, Definition 2.1, to the H−1 norm. We
define the H−1 norm of ∇ · f(u) as follows.

Definition 5.1 (H−1 norm of ∇ · f(u)).

‖∇ · f(u)‖−1,ΓO,Ω = sup
φ∈H1

ΓO
(Ω)

∣

∣

∣

∣

−〈f(u),∇φ〉0,Ω + 〈n · f(u), φ〉0,ΓI

|φ|1,Ω

∣

∣

∣

∣

,

with H1
ΓO

(Ω) = {u ∈ H1(Ω) : u = 0 on ΓO}.
The following theorem identifies a relationship between weak solutions of (1.1)

and the H−1 norm.
Theorem 5.2. If ‖∇ · f(u)‖−1,ΓO,Ω = 0 and ‖u − g‖0,ΓI

= 0, then u is a weak
solution of (1.1).

Proof. If ‖∇ · f(u)‖−1,ΓO,Ω = 0 and ‖u− g‖0,ΓI
= 0, then, by (1.2) and Definition

5.1, we have ∀ φ ∈ H1
ΓO

(Ω),

| − 〈f(u),∇φ〉0,Ω + 〈n · f(g), φ〉0,ΓI
| = | − 〈f(u),∇φ〉0,Ω

+ 〈n · (f(g) − f(u) + f(u)), φ〉0,ΓI
|

≤ | − 〈f(u),∇φ〉0,Ω + 〈n · f(u), φ〉0,ΓI
|

+ ‖n · (f(g) − f(u))‖0,ΓI
‖φ‖0,ΓI

≤ | − 〈f(u),∇φ〉0,Ω + 〈n · f(u), φ〉0,ΓI
|

+K ‖g − u‖0,ΓI
‖φ‖0,ΓI

= 0.

This means, according to Definition 2.1, that u is a weak solution of (1.1).
Remark 5.3. In Theorem 5.2, it is actually sufficient that ‖u − g‖−1/2,ΓI

= 0,
because 〈n · (f(g) − f(u)), φ〉0,ΓI

≤ ‖n · (f(g) − f(u))‖−1/2,ΓI
‖φ‖1/2,ΓI

. Condition
‖u−g‖0,ΓI

= 0 implies that ‖u−g‖−1/2,ΓI
= 0, because ‖u−g‖−1/2,ΓI

≤ ‖u−g‖0,ΓI
.

5.1. H(div)-conforming LSFEM. We assume that the following approxima-
tion properties hold for the finite element spaces Wh, Uh in Problem 3.1 [23, 10]:
there exist interpolants Πhw ∈ Wh,Πhu ∈ Uh, s.t.

‖w − Πhw‖0,Ω ≤ c hν ‖w‖ν,Ω, (5.1)

‖u− Πhu‖0,Ω ≤ c hν ‖u‖ν,Ω,
‖w − Πhw‖0,ΓI

≤ c hν ‖w‖ν,ΓI
,

‖u− Πhu‖0,ΓI
≤ c hν ‖u‖ν,ΓI

,
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with 0 < ν. For instance, for our choice of RT0 elements for Wh and bilinear elements
for Uh, (5.1) holds with ν ≤ 1. For weak solutions with u ∈ H1/2−ε(Ω) and w ∈
H(div,Ω) ∩ (H1/2−ε(Ω))2, ν = 1/2 − ε, ∀ ε > 0. Also, for Raviart-Thomas vector
FE spaces, we can choose the interpolant in the divergence-free subspace, s.t. ‖∇ ·
Πhw‖0,Ω = 0. We can now prove that, for solutions of minimization problem (3.2) on
successively refined grids, the functional goes to zero as the grid is refined.

Lemma 5.4. Let (wh, uh) be the solution of LS minimization problem (3.2). Then
nonlinear LS functional F(wh, uh; g) → 0 as h→ 0.

Proof. Assume that w ∈ H(div,Ω) ∩ (H1/2−ε(Ω))2 and u ∈ H1/2−ε(Ω) form a
weak solution of (2.1). It follows that

F(wh, uh; g) ≤ F(Πhw,Πhu; g)

= ‖∇ · Πhw‖2
0,Ω + ‖Πhw − f(Πhu)‖2

0,Ω

+ ‖n · (Πhw − f(g))‖2
0,ΓI

+ ‖Πhu− g‖2
0,ΓI

≤ ‖∇ · Πhw‖2
0,Ω + ‖w − Πhw − f(u) + f(Πhu)‖2

0,Ω

+ ‖n · (Πhw − w)‖2
0,ΓI

+ ‖Πhu− u‖2
0,ΓI

≤ ‖∇ · Πhw‖2
0,Ω + ‖w − Πhw‖2

0,Ω +K ‖u− Πhu‖2
0,Ω

+ ‖Πhw − w‖2
0,ΓI

+ ‖Πhu− u‖2
0,ΓI

≤ c hν‖u‖2
ν,Ω,

with ν = 1/2 − ε, ∀ ε > 0, which shows that F(wh, uh; g) → 0 as h→ 0.

We can now state and prove the following theorem:

Theorem 5.5 (Weak conservation theorem for H(div)-conforming LSFEM). Let
(wh, uh) be the solution of LS minimization problem (3.2). If finite element approx-
imation uh converges in the L2 sense to û as h → 0, then û is a weak solution of
(1.1). That is, if

‖uh − û‖0,Ω → 0, (5.2)

‖uh − û‖0,ΓI
→ 0, (5.3)

for some û, then û is a weak solution.

Proof. According to Theorem 5.2, it suffices to prove that ‖∇ · f(û)‖−1,ΓO,Ω = 0
and ‖û− g‖0,ΓI

= 0. This can be obtained as follows. From (5.1), we have

‖∇ · f(û)‖−1,ΓO,Ω = sup
φ∈H1

ΓO

∣

∣

∣

∣

−〈f(û),∇φ〉0,Ω + 〈n · f(û), φ〉0,ΓI

|φ|1,Ω

∣

∣

∣

∣

.
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Adding and subtracting wh and f(uh) in the interior term, and using Green’s Formula
results in

‖∇ · f(û)‖−1,ΓO,Ω = sup
φ∈H1

ΓO

∣

∣

∣

∣

−〈wh + f(uh) − wh + f(û) − f(uh),∇φ〉0,Ω
|φ|1,Ω

+
〈n · f(û), φ〉0,ΓI

|φ|1,Ω

∣

∣

∣

∣

,

= sup
φ∈H1

ΓO

∣

∣

∣

∣

〈∇ · wh, φ〉0,Ω − 〈f(uh) − wh + f(û) − f(uh),∇φ〉0,Ω
|φ|1,Ω

+
〈n · (f(û) − wh), φ〉0,ΓI

|φ|1,Ω

∣

∣

∣

∣

.

By adding and subtracting f(uh) and f(g) in the boundary term, we have

‖∇ · f(û)‖−1,ΓO,Ω = sup
φ∈H1

ΓO

∣

∣

∣

∣

〈∇ · wh, φ〉0,Ω − 〈f(uh) − wh + f(û) − f(uh),∇φ〉0,Ω
|φ|1,Ω

+
〈n · (f(û) − f(uh) + f(uh) − f(g) − wh + f(g)), φ〉0,ΓI

|φ|1,Ω

∣

∣

∣

∣

.

We now use the generalized Cauchy-Schwarz inequality,

〈ψ, φ〉0,Γ ≤ ‖ψ‖−1/2,Γ ‖φ‖1/2,Γ,

to arrive at

‖∇ · f(û)‖−1,ΓO,Ω ≤ sup
φ∈H1

ΓO

‖∇ · wh‖0,Ω ‖φ‖0,Ω + ‖f(uh) − wh‖0,Ω |φ|1,Ω
|φ|1,Ω

+
‖f(û) − f(uh)‖0,Ω |φ|1,Ω

|φ|1,Ω

+
‖n · (f(û) − f(uh))‖−1/2,ΓI

‖φ‖1/2,ΓI

|φ|1,Ω

+
‖n · (f(uh) − f(g))‖−1/2,ΓI

‖φ‖1/2,ΓI

|φ|1,Ω

+
‖n · (wh − f(g))‖−1/2,ΓI

‖φ‖1/2,ΓI

|φ|1,Ω
.

Using the Lipschitz continuity of f(u), the Poincaré-Friedrichs inequality [8],

∃ c s.t. ‖φ‖0,Ω ≤ c |φ|1,Ω ∀ φ ∈ H1
ΓO
,

and the trace inequality [13]

∃ c s.t. ‖φ‖1/2,ΓI
≤ c |φ|1,Ω ∀ φ ∈ H1

ΓO
,



22 De Sterck, Manteuffel, McCormick, Olson

we find

‖∇ · f(û)‖−1,ΓO,Ω ≤ c
(

‖∇ · wh‖0,Ω + ‖f(uh) − wh‖0,Ω + ‖û− uh‖0,Ω

+‖û− uh‖−1/2,ΓI
+ ‖uh − g‖−1/2,ΓI

+ ‖n · (wh − f(g))‖−1/2,ΓI

)

Using our convergence assumption and the convergence of the nonlinear LSFEM func-
tional from Lemma 5.4, it then follows by taking the limit h → 0 of the right hand
side, that ‖∇ · f(û)‖−1,ΓO,Ω = 0.

Similarly, ‖û− g‖0,ΓI
= 0 follows from

‖û− g‖0,ΓI
= ‖û− uh + uh − g‖0,ΓI

≤ ‖û− uh‖0,ΓI
+ ‖uh − g‖0,ΓI

,

which proves the theorem.
Remark 5.6. In Theorem 5.5, it is actually sufficient that ‖uh− û‖−1/2,ΓI

→ 0.

5.2. Potential H(div)-conforming LSFEM. We can proceed analogously for
the potential H(div)-conforming LSFEM. If Ψh and Uh satisfy an approximation
property, we can prove that G(uh, ψh; g) → 0 as h→ 0, when (uh, ψh) solves (3.4).

Lemma 5.7. Let (uh, ψh) be the solution of LS minimization problem (3.4). Then
nonlinear LS functional G(uh, ψh; g) → 0 as h→ 0.

Proof. Analogous to the proof of Lemma 5.4.
Similar to Theorem 5.5, we have the following.
Theorem 5.8 (Weak conservation theorem for potential H(div)-conforming LS-

FEM). Let (ψh, uh) be the solution of LS minimization (3.4). If finite element ap-
proximation uh converges in the L2 sense to û as h→ 0, then û is a weak solution of
(1.1). That is, if

‖uh − û‖0,Ω → 0, (5.4)

‖uh − û‖0,ΓI
→ 0, (5.5)

for some û, then û is a weak solution.
Proof. Analogous to the proof of Theorem 5.5.

6. Conclusions and future work. We presented two classes ofH(div)-conforming
LSFEMs for the Burgers equation. The methods are based on a reformulation of the
conservation law in terms of the generalized flux vector, or its associated flux potential.
We presented extensive numerical results, which indicate that the H(div)-conforming
LSFEMs converge to an entropy weak solution of the Burgers equation. This is an
interesting result, because the schemes do not satisfy an exact discrete conservation
property in the sense of Lax and Wendroff [19], and because the entropy solution seems
to be obtained without need for an entropy fix. We presented weak conservation the-
orems for our H(div)-conforming LSFEMs, that are equivalent to the Lax-Wendroff
conservation theorem for conservative finite difference methods. We proved that if
approximation uh converges to a function, û, in the L2 sense, then û is a weak solu-
tion of the conservation law. Our H(div)-conforming methods do not satisfy an exact
discrete conservation property, but converge to a weak solution. This illustrates that
the discrete conservation property of Lax and Wendroff is not a necessary condition
for convergence to a weak solution. The exact discrete conservation requirement can
be replaced by a minimization principle in a suitable continuous norm.

The main disadvantage of LSFEM for hyperbolic conservation laws is that there
is substantial smearing at shocks. However, our results show that this smearing
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can be counteracted efficiently by adaptive refinement. Also, a clear disadvantage
of our reformulation is that the dimensionality of the problem is increased because
extra variables are introduced (w or ψ). Therefore, even though our approach has
several attractive features, including SPD linear systems and a natural error estimator,
it is not yet clear that our H(div)-conforming LSFEMs can compete in terms of
cost/accuracy ratios with successful existing approaches based on the Lax-Wendroff
conservation paradigm, which have reached high levels of sophistication. Nevertheless,
our results indicate that our approach is promising, and that research on numerical
schemes for hyperbolic conservation laws does not have to be limited to the class of
schemes that satisfy the discrete conservation property of Lax and Wendroff.

In future work we plan to explore the following avenues.
i. Theoretical convergence analysis of the H(div)-conforming LSFEMs for the Burgers
equation. This entails proving convergence of uh to û in the L2 sense (see [21] for
preliminary results), and proving convergence to an entropy weak solution.
ii. Extension to higher-order elements. In [25], we observed, for a different LSFEM,
that higher-order elements lead to sharper shock profiles, while overshoots and un-
dershoots do not increase. This suggests that the shock-resolving properties of our
H(div)-conforming LSFEMs may also be improved by employing higher-order ele-
ments, which should be a relatively straightforward extension of the schemes pre-
sented in this paper. It is important to note that the resulting higher-order LSFEM
schemes are fully linear—i.e. nonlinear limiter functions are not needed [20], which
make the higher-order LSFEM schemes attractive for iterative solution methods. We
also intend to explore the use of h, p-refinement methods.
iii. Extension to multiple spatial dimensions and to systems of conservation laws.
The LSFEMs proposed in this paper for the Burgers equation, may be more generally
applicable to systems of hyperbolic conservation laws in multiple spatial dimensions.
However, it remains to be investigated whether, and for which FE spaces, convergent
FE methods would be obtained using the minimization framework introduced in this
paper. This is a topic for future research.
iiii. Optimal AMG solvers for the linear systems. This is work in progress; see [21]
for preliminary results.

Appendix. Divergence of Gauss-Newton LSFEM for the standard con-

servation law formulation.

From Remark 2.12, problematic Newton convergence may be expected when ap-
plying the Newton procedure directly to the standard conservation law formulation.
Define the LS functional as

H(u; g) := ‖∇ · f(u)‖2
0,Ω + ‖u− g‖2

0,ΓI
, (A.1)

and formulate the minimization over a finite-dimensional subspace:

uh∗ = arg min
uh∈Uh

H(uh; g), (A.2)

with bilinear elements on quadrilaterals. The resulting Gauss-Newton LSFEM (see
also [25]) fails to converge for a discontinuous solution when f(u) is nonlinear. Figure
A.1 shows uh contours for a Burgers shock simulation result with u = 1 on the left
of the shock and u = 0 on the right. The LSFEM clearly fails to converge to the
solution of the problem. On each grid level, the Newton procedure converges, but to
an incorrect solution. The L2 error and the nonlinear functional fail to converge as
the grid is refined. It is plausible that this behavior of the non-H(div)-conforming
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Gauss-Newton LSFEM is caused by the unboundedness of the Fréchet derivative.
The method seems to converge to a spurious solution, which is probably a spurious
stationary point of the functional in (A.1).
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Fig. A.1. Non-H(div)-conforming LSFEM: shock problem on grids with 322, 642, and 1282

elements. The LSFEM seems to converge to a spurious stationary point of the functional that is
not a weak solution of the conservation law.

It may be possible to obtain a convergent LSFEM for functional H(u; g) in (A.1)
by employing nonlinear solution procedures, other than the Gauss-Newton method,
that do not rely on linearization or the Fréchet derivative. This remains the subject
of further study.

It is interesting to note that, by adding numerical dissipation to the standard con-
servation law formulation, the unboundedness of the Fréchet derivative in the Newton
procedure can be remedied. This may be the reason why convergence problems do
not immediately arise when Newton methods are used for implicit schemes that rely
on discretizations of (1.1) in which numerical dissipation is added. In the LSFEMs
discussed in this paper, numerical dissipation is not added explicitly, and the Newton
convergence problem appears. As is shown in the body of this paper, the H(div)-
conforming reformulations result in operators with bounded Fréchet derivative, and
the Gauss-Newton method can be applied successfully to solve the resulting nonlinear
problems.
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