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SUMMARY

Two efficiency-based grid refinement strategies are investigated for adaptive finite element solution of
partial differential equations. In each refinement step, the elements are ordered in terms of decreasing
local error, and the optimal fraction of elements to be refined is determined based on efficiency measures
that take both error reduction and work into account. The goal is to reach a pre-specified bound on
the global error with minimal amount of work. Two efficiency measures are discussed, ‘work times
error’ and ‘accuracy per computational cost’. The resulting refinement strategies are first compared
for a one-dimensional model problem that may have a singularity. Modified versions of the efficiency
strategies are proposed for the singular case, and the resulting adaptive methods are compared with
a threshold-based refinement strategy. Next, the efficiency strategies are applied to the case of hp-
refinement for the one-dimensional model problem. The use of the efficiency-based refinement strategies
is then explored for problems with spatial dimension greater than one. The ‘work times error’ strategy
is inefficient when the spatial dimension, d, is larger than the finite element order, p, but the ‘accuracy
per computational cost’ strategy provides an efficient refinement mechanism for any combination of d
and p. Copyright c© 2007 John Wiley & Sons, Ltd.
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1. Introduction

Adaptive finite element methods are being used extensively as powerful tools for approximating
solutions of partial differential equations (PDEs) in a variety of application fields, see, e.g.,
[1, 2, 3]. This paper investigates the behavior of two efficiency-based grid refinement strategies
for adaptive finite element solution of PDEs. It is assumed that a sharp, easily computed
local a posteriori error estimator is available for the finite element method. In each refinement
step, the elements are ordered in terms of decreasing local error, and the optimal fraction of
elements to be refined in the current step is determined based on efficiency measures that take
both error reduction and work into account. The goal is to reach a pre-specified bound on
the global error with a minimal amount of work. It is assumed that optimal solvers are used
for the discrete linear systems, and that the computational work for solving these systems
is, thus, proportional to the number of degrees of freedom (DOF). Two efficiency measures
are discussed. The first efficiency measure is ‘work times error’ efficiency (WEE), which was
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originally proposed in [4]. A second measure proposed in this paper is called ‘accuracy per
computational cost’ efficiency (ACE). In the first part of the paper, the performance of the
two measures is compared for a standard one-dimensional (1D) model problem with solution
xα, which may exhibit a singularity at the origin, depending on the value of the parameter α.
The accuracy of the resulting grid is compared with the asymptotically optimal ‘radical grid’
[3, 5]. Modified versions of the efficiency strategies are proposed for the singular case, and
the resulting adaptive methods are compared with a threshold-based refinement strategy. The
efficiency strategies are also applied to the hp-refinement case for the 1D model problem, and
the results are compared with the ‘optimal geometric grid’ for hp-refinement that was derived
in [5]. In the last part of the paper, the use of the efficiency-based refinement strategies is
explored for problems with spatial dimension d > 1. The ‘work times error’ strategy turns out
to be inefficient when the spatial dimension, d, is larger than the finite element order, p, but
the ‘accuracy per computational cost’ strategy provides an efficient refinement mechanism for
any combination of d and p. This is illustrated for a model problem in two dimensions (2D).

This paper is organized as follows. In the next section, the efficiency based h-refinement
strategies are described, along with the notation used in this paper, the model problem, and
assumptions on the PDE problems, finite element methods, error estimators and linear solvers
considered. The performance of the WEE and ACE refinement strategies for the 1D model
problem are discussed in Section 3. Modified WEE and ACE refinement strategies for the
singular case are considered in Section 4. In Section 5, efficiency-based hp-refinement strategies
are discussed and illustrated for the 1D test problem. Sec. 6 describes how the efficiency-based
refinement strategies can be applied for 2D problems. Conclusions are formulated in Section
7.

2. Efficiency-based h-refinement strategies

2.1. Assumptions on PDE problem, error estimate, refinement process, and linear solver

Consider a PDE written abstractly as

Lu = f in Ω ⊂ Rd, (1)

with appropriate boundary conditions and solution space V . Assume that continuity and
coercivity bounds for the corresponding bilinear form can be verified in some suitable norm.
Let Th be a regular partition of the domain, Ω, into finite elements [3, 6], i.e., Ω =

⋃

τ∈Th
τ

with h = max{diam(τ) : τ ∈ Th}. In this paper we assume, for simplicity, that the elements
are squares in 2D, and cubes in three dimensions (3D). Let Vh be a finite-dimensional subspace
of V and uh ∈ Vh a finite element approximation such that the following error estimate holds:

||u − uh||Hm(Ω) ≤ Chs−m||u||Hs(Ω), (2)

where 0 ≤ m < s < p+1, with m and p integers and s a real number. Here, p is the polynomial
order of the finite element method. Furthermore, assume that we obtain a sharp a-posteriori
error estimate E(uh, f) that is equivalent to ||u − uh||Hm(Ω). The associated error functional
is given by F(uh, f) = E2(uh, f). For example, the L2 functional is a natural a-posteriori
error estimate for First-Order System Least Squares (FOSLS) finite element methods, and
equivalence to the H1 norm has been proved for several relevant second-order PDE systems
of elliptic type [4, 7, 8, 9]. The local value of the error, E, on element τj is denoted by ǫj .
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Consider an adaptive hp refinement process of the following form. The refinement process
starts on a coarse grid with uniform element size h and order p = 1 (level 0), and proceeds
through levels ℓ = 1, 2, . . . until the error measure, Eℓ(uh, f), has value less than a given bound.
In each step, some elements may be refined in h by splitting them into 2d sub-elements, and
some elements may be refined in p by doubling the element order. The decision of which
elements to refine is based on the information provided by the local error estimator, and by
heuristics that may take into account predicted error reduction and work. In particular, we
consider strategies where the elements are ordered in terms of decreasing local error, such
that elements with larger error are considered for refinement first. Standard threshold-based
approaches then may refine, for example, a fixed fraction of the elements in every step, or a
fixed fraction of the total error functional. Let the work needed to solve the discrete linear
system on level ℓ be given by Wℓ. Our goal is to reach a pre-specified bound on the global error,
Eℓ(uh, f), with a minimal amount of total work,

∑L
ℓ=1 Wℓ. Finding this optimal grid sequence

may be difficult, even if we restrict the process to h-refinement alone. Hence, we turn to seeking
nearly optimal solutions by using heuristics of greedy type. We consider refinement heuristics
that determine the fraction of elements to be refined based on optimizing an efficiency measure
in every step. We expect that a desirable grid sequence needs to be a high accuracy sequence,
i.e., a grid sequence for which the error, Eℓ(Nℓ), decreases with nearly optimal order as a
function of the number of DOF, Nℓ, on grid level ℓ.

We allow the domain to contain singularities, i.e., points in whose neighborhood the full
convergence order of the finite element method cannot be attained due to lack of smoothness
of the solution. For simplicity, assume that those singular points can only be located at coarse-
level grid points, and that their power and location are known. If this information is not known
in advance, the location and strength of singularities can be estimated by monitoring reduction
rates of local error functionals during a few steps of initial uniform refinement.

It is assumed that optimal solvers, e.g., multigrid, are used for the discrete linear systems.
The computational work for solving these systems is, thus, assumed to be a fixed constant
times the number of DOF: Wℓ = c Nℓ.

2.2. 1D model problem and finite element method

In the first part of this paper, we study the performance of the proposed efficiency based
refinement strategies for a standard model problem in 1D [3, 5]:

u′′ = α(α − 1)xα−2, u(0) = 0, u(1) = 1, (3)

with exact solution given by u = xα. While the efficiency-based refinement strategies can be
applied to various types of finite element methods and associated error estimates, we choose
to illustrate the refinement strategies for model problem (3) using standard Galerkin finite
element methods of order p, with the error estimated by the H1 seminorm of the actual error,
e = u − uh, i.e., F(uh, f) = ||u′ − u′

h||2L2(Ω) and ǫ2j = ||u′ − u′
h||2L2(τj)

. These are equivalent

to the H1 norm, since it turns out that e(xi) = 0 at each grid point for our model problem

[3, 5]. Note that u ∈ H1+α− 1
2
−ǫ((0, 1)), for any ǫ > 0. If we choose 1

2 < α ≤ 3
2 such that

u ∈ H1((0, 1)) but u /∈ H2((0, 1)), then there is an xα-type singularity at x = 0. We choose
this model problem and this error estimator because asymptotically optimal h and hp finite
element grids have been developed for them [3, 5], which can be used as a point of comparison
for the refinement strategies to be presented in this paper. In addition, it turns out that the
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finite element approximations can be obtained easily, namely, by interpolation for p = 1, and
by integrating a truncated Legendre expansion of u′(x) for p ≥ 1. The refinement strategies
presented in this paper can be equally applied to other finite element methods, as is illustrated
in the second part of the paper, where we present results for a 2D problem using the FOSLS
finite element method [8, 4].

2.3. ‘Work times error’ and ‘accuracy per computational cost’ efficiency strategies

On each level, order the elements such that the local error, ǫj , satisfies ǫ1 ≥ ... ≥ ǫNℓ
.

With r ∈ (0, 1] denoting the to-be-determined fraction of elements that will be refined, let
f(r) ∈ [0, 1] be the fraction of the total error functional in the refinement region, γ(r) ∈ [0, 1]
the predicted functional reduction, and η(r) ∈ [1, 2] the ratio of the number of DOF on level
ℓ+1 and level ℓ, i.e., Nℓ+1 = η(r)Nℓ. The first refinement strategy, ‘work times error’ efficiency
(WEE), was initially proposed in [4]. Here, the fraction, r, of elements to be refined on the
current level is determined by minimizing the following efficiency measure:

work× error reduction = η(r)
√

γ(r), (4)

i.e.,

ropt = arg min
r∈(0,1]

η(r)
√

γ(r). (5)

The motivation for this heuristic is as follows: more work on the current level is justified when
it results in increased error reduction that offsets the extra work. While this choice does not
guarantee that a globally optimal grid sequence is obtained, this local optimization in each
step results in an overall strategy of greedy type, which can be expected to lead to a reasonable
approximation to the optimal grid sequence.

We also propose a second strategy, ‘accuracy per computational cost’ efficiency (ACE). We
define the predicted effective functional reduction factor

γ(r)eff = γ(r)1/η(r). (6)

The fraction, r, of elements to be refined on the current level is determined by minimizing this
effective reduction factor, which is the same as minimizing log(γ(r)eff), i.e.,

ropt = arg min
r∈(0,1]

log(γ(r))

η(r)
. (7)

The effective functional reduction factor, γ(r)eff, measures the functional reduction per unit
work. Indeed, compare two hypothetical error-reducing processes with functional reduction
factors γ1 and γ2, and work proportional to η1 and η2. Assume that process 2 requires double
the work of process 1, η2 = 2 η1. Then the two processes would be equally effective when
γ2 = γ2

1 , because process 1 could be applied twice to obtain the same error reduction as
process 2, using the same total amount of work as process 2. Minimizing the effective functional
reduction in every step, thus, chooses the fraction, r, of elements to be refined by locally
minimizing the functional reduction per unit work.

Both the strategies of minimizing work times error reduction, and minimizing the effective
functional reduction factor, are ways for optimizing the efficiency of the refinement process at
each level. Hence, we call the two proposed refinement strategies efficiency-based.
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2.4. Error and work estimates for h-refinement in 1D

The predicted functional reduction ratio, γ(r), and element growth ratio, η(r), can be
determined as follows for the case of h-refinement in 1D with fixed finite element order p.

The element growth ratio, η(r), can be determined easily. We have Nℓ elements on level ℓ. Of
these, rNℓ are refined into two new elements each, while (1− r)Nℓ elements are left unrefined.
Thus, the number of elements on level ℓ + 1 is Nℓ+1 = (1 − r)Nℓ + 2rNℓ = (1 + r)Nℓ. This
yields

η(r) = 1 + r. (8)

The predicted functional reduction factor, γ(r), depends on the error estimate and the
smoothness of the solution. As mentioned above, we consider the case that the error estimate
is equivalent to the H1 norm of u−uh, i.e., F(uh, f) ≈ ||u−uh||2H1(Ω) and ǫ2j ≈ ||u−uh||2H1(τj)

.

The error has the following asymptotic behavior [6].
For elements τj in which the solution is smooth (at least in Hp+1(τj) if order p elements are

used), we have

ǫ2j ≈ ||uh − u||2H1(τj)

≤ Ch2p
j ||u||2Hp+1(τj)

≤ CMp+1h
2p
j hj.

(9)

Here, we can take Mp+1 = ‖∑p+1
i=0 u(i)2‖∞,τj

, such that ||u||2Hp+1(τj)
≤ Mp+1 hj . If τj is split

into two equal parts, we have two new elements, τj,1 and τj,2, and we can assume that

ǫ2j,1 + ǫ2j,2
ǫ2j

≈
(

1

2

)2p

. (10)

However, if u is less smooth in some element τj , i.e., if we can only assume that u ∈ Hs(τj)
with s ∈ R, s < p + 1, then we have

ǫ2j ≤ Ch
2(s−1)
j ||u||2s,τi

. (11)

For simplicity, we only consider the highly singular case here, for which s << p + 1. If,
again, τj is split in two, assuming element τj,1 contains the singularity, then ǫj,1 >> ǫj,2 and
||u||s,τj,1

≈ ||u||s,τj
. We then obtain

ǫ2j,1 + ǫ2j,2
ǫ2i

≈
ǫ2j,1
ǫ2j

≈
(

1

2

)2(s−1)

. (12)

Suppose the solution is sufficiently smooth in the whole domain. Then the predicted
functional reduction factor, γ(r), can be obtained as follows. We apply (10) to the elements
that are refined. A fraction 1 − f(r) of elements do not get refined, and so we assume that
their errors are not reduced. This results in

γ(r) = 1 − f(r) +

(

1

2

)2p

f(r). (13)

It is cumbersome to give a general expression for the singular case. However, assuming that
we know the power and location of the singularities in advance, one can easily compute γ(r)
using (10) and (12).
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3. Performance of the WEE and ACE h-refinement strategies in 1D

3.1. Performance of WEE and ACE for smooth solutions
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WEE :                 −1.0001x−0.2154

ACE  :                 −1.0001x−0.2154

Radical Grid :       −1.0000x−0.2162

Figure 1. Error versus DOF, α = 2.1 (no singularity), p = 1.
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(a) WEE: NL = 32, 741, EL = 1.859e − 5, L = 18,
total work = 102, 313
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(b) ACE: NL = 32, 760, EL = 1.858e − 5, L = 16,
total work = 65, 520

Figure 2. Local error functional, ǫ2i , versus grid location on the final grid, α = 2.1 (no singularity),
p = 1.

We apply the WEE and the ACE strategies to our 1D model problem (3) with p = 1.
On each level ℓ, each element is allowed to be refined at most once. We first consider the
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Figure 3. Refined fraction of error functional, f(ropt), versus level, ℓ, and refined fraction of elements,
ropt, versus level, ℓ, α = 2.1 (no singularity), p = 1.
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Figure 4. Number of elements, Nℓ, versus level, ℓ, α = 2.1 (no singularity), p = 1.

nonsingular case and choose α > 3/2 such that u ∈ H2((0, 1)). It follows that the predicted
functional reduction factor, γ(r), is given by

γ(r) = 1 − 3

4
f(r). (14)

Note that, for a given error bound, our ultimate goal is to choose a grid sequence that minimizes
the total work,

∑L
ℓ=1 Wℓ, which is the same as minimizing

∑L
ℓ=1 Nℓ, based on our assumption

that the work is proportional to Nℓ. For a given error bound, the number of elements on final
grid NL is determined by the convergence rate of the global error w.r.t. the DOF, which in
fact is determined by the refinement strategy. For our model problem, it has been shown in [5]
that the rate of convergence is never better than (Np)−p, where N is the number of elements
and p is the degree of the polynomial.
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Figure 6. Predicted functional reduction factor, γ(ropt), and actual functional reduction factor, g,
versus level, ℓ, α = 2.1 (no singularity), p = 1.

THEOREM 1. [5] Let E = (
∑

ǫ2i )
1
2 . Then there is a constant, C = C(α, p) > 0, for any

grid {0 = x0 < x1 < ... < xN = 1}, such that

E ≥ C (Np)−p. (15)

For our example problem, an asymptotically optimal final grid, called a radical grid, is
described in [3, 5]:

xj = (j/N)(p+1/2)/(α−1/2), j = 0, ..., N. (16)
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This grid is optimal in the sense that, in the limit of large N , it results in the smallest error as
a function of the number of DOF. If the WEE or the ACE strategy results in a grid sequence
with approximately optimal convergence rate of the global error w.r.t. DOF, then the number
of elements on the final grid must be close to the optimal number of elements, which only
depends on the given error bound. Because we want to minimize work, it follows that, among
the methods with approximately optimal convergence rate, the methods for which the sequence
{Nℓ} increases fast are preferable. Large refinements are, thus, advantageous.

We compare the numerical results of the WEE strategy and the ACE strategy, and the
radical grid, for α = 2.1 and p = 1 in Fig. 1 to Fig. 6. In the numerical results, we carry out
the refinement process until EL(uh, f) ≤ 2e−5 on final grid level L.

From Fig. 1, it can be observed that both strategies result in a highly accurate grid sequence.
Thus, for a given error bound, the difference in the number of elements on the final grid is
very small. This can be verified on Fig. 2. Fig. 3 and Fig. 4 show that the ACE strategy
is slightly more efficient than the WEE strategy for our model problem in the smooth case.
There are two small refinements in the WEE refinement process, while there are no small
refinements for the ACE strategy. It follows that for a given error bound on the final grid, the
WEE strategy may require slightly more total work than the ACE strategy, see Fig. 5. Fig. 2
shows that, for both strategies, the local errors in all elements tend to be equally distributed.
This explains why the values of f(ropt) and ropt are close in Fig. 3. From Fig. 6 one can see
that the predicted reduction factor γ(ropt) is very accurate. This suggests a modification of
the refinement process that can be considered to increase performance: one does not need to
solve the linear systems until the new level is refined enough to have a significant number of
additional elements in it. In this way complexity is never a problem, and we can still have a
highly accurate grid sequence.

3.2. Performance of WEE and ACE for singular solutions

Next, we consider a singular example: let α = 0.6, so that u ∈ H1.1((0, 1)). In the numerical
results, we carry out the refinement process until EL(uh, f) ≤ 7e−4 on final grid level L. For
p = 1, the error reduction in the element that contains x = 0 can be approximately given by
(

1
2

)0.2
, see (12). The predicted reduction factor γ(r) is given by

γ(r) = 1 − 3

4
f(r) +

[

(

1

2

)0.2

− 1

4

]

f(
1

Nℓ
). (17)

Here, we assume that the local error in the element that contains x = 0 is always the largest.
The numerical results in Fig. 7 to Fig. 12 show that the two refinement strategies fail

for this singular case. Fig. 7 shows that the WEE strategy results in a highly accurate grid
sequence, while the ACE strategy becomes inaccurate by comparison with the radical grid. For
both strategies, the local error in the first element, which contains the singularity, is always
the largest, see Fig. 8. Hence, it is refined by the WEE and the ACE in every step. This also
confirms that the predicted reduction factor can be given by (17). The WEE strategy generates
a grid sequence with local errors being nearly equally distributed, but the ACE strategy does
not: more than 90% of the global error accumulates in only 10% of the elements; see Fig. 8
and Fig. 9. Most refinement steps of the WEE strategy are small refinements: only the first
element (possibly with a few other elements) is continuously being refined (see Figs. 9 and 10).
This implies that the number of elements increases slowly as a function of refinement level. It
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Figure 7. Error versus DOF, α = 0.6 (singular case), p = 1.
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(a) WEE: NL = 6, 925, EL = 6.169e − 4, L = 154,
total work = 192, 775
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(b) ACE: NL = 24, 986, EL = 6.411e − 4, L = 106,
total work = 365, 420

Figure 8. Local error functional, ǫ2i , versus grid location on the final grid, α = 0.6 (singular case),
p = 1.

follows that the total work is very large. The ACE strategy does choose a refinement region
with large fraction of the error in it. However, this large fraction of error is only contained in a
few elements. As a result, only a small fraction of elements are refined. Thus, the required total
work is still large; see Figs. 10 and 11. Compared to the nonsingular case (Fig. 5), the slope
of the error versus total work plot in Fig. 11 is much less steep, especially in the initial phase
of the refinement process. The predicted reduction factors for both strategies are accurate,
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Figure 9. Refined fraction of error functional, f(ropt), versus level, ℓ, and refined fraction of elements,
ropt, versus level ℓ, α = 0.6 (singular case), p = 1.
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Figure 10. Number of elements, Nℓ, versus level, ℓ, α = 0.6 (singular case), p = 1.

see Fig. 12. This suggests that we can make the same modification as for the smooth case to
increase performance: one can wait on solving the linear systems until the number of elements
has increased sufficiently. In this way, one can assure that complexity is never a problem,
but calculating and minimizing the WEE and ACE functions many times may be costly as
well. In conclusion, for the highly singular case, the WEE strategy results in an accurate grid
sequence but is not efficient due to too many small refinements; the ACE strategy is worse
than the WEE strategy in this case, because the grid sequence is not accurate and many small
refinements are performed.
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Figure 11. Final error, EL, versus total work,
PL

ℓ=1
Nℓ, α = 0.6 (singular case), p = 1.
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Figure 12. Predicted functional reduction factor, γℓ(ropt), and actual functional reduction factor, gℓ,
versus level, ℓ, α = 0.6 (singular case), p = 1.

4. Modified WEE and ACE h-refinement strategies for singular solutions in 1D

4.1. Modified WEE and ACE h-refinement strategies

The inefficiency of the WEE and ACE strategies for the highly singular solution is due to
many steps of small refinement for the singular elements. Therefore, we attempt to avoid these
steps by using a geometrically graded grid starting from the singular point, with the aim of
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saving work while attempting to keep the grid sequence accurate.
As was discussed before, we assume that singularities can only be located at coarse-level grid

points, and that we know the location and the power of the singularities in advance. We propose
to do graded-grid refinement for elements containing a singularity, in such a way that we obtain
the same error reduction factor as in elements in which the solution is smooth. For example, for
a singularity located at a domain boundary, the element at the boundary is split in two, and
then, within the same refinement step, the new element at the singularity is repeatedly split
in two again, until the predicted error reduction factor matches the desired error reduction.
We modify the predicted functional reduction factor, γ(r), and the work increase ratio, η(r),
accordingly. We expect the correspondingly modified WEE and ACE strategies (MWEE and
MACE) to generate a highly accurate grid sequence in an efficient way. This results in the
following modified efficiency-based refinement strategies:

1) Order the elements such that the local error, ǫj , satisfies ǫ1 ≥ ǫ2 ≥ ... ≥ ǫNℓ
.

2) Perform graded grid refinement for elements containing a singularity, i.e., if u ∈ Hsj (τj),
then graded grid refinement with mj levels is used for any τj that needs to be refined, with
mj satisfying

(

1

2

)2mj(sj−1)

≈
(

1

2

)2p

⇒ mj = ⌈ p

sj − 1
⌉.

Note that we assume here that the error in the first, singular new element dominates the sum
of the errors in the other new elements of the graded grid. This is a good approximation for a
strong singularity. For elements in which the solution is smooth, single refinement is performed:
mj = 1. Let kj be the number of new elements after τj is refined: kj = mj + 1.

3) The predicted functional reduction factor, γ(r), and the work increase ratio, η(r), are
given by

η(r) = 1 − r +

∑

j≤rNℓ
kj

Nℓ
,

γ(r) = 1 − f(r) +

(

1

2

)2p

f(r).

(18)

4) Find the optimal r defined in (5) for the MWEE strategy, and in (7) for the MACE
strategy.

5) Repeat.

4.2. Peformance of the modified WEE and ACE h-refinement strategies for singular solutions

We again choose α = 0.6 and p = 1 for our example problem. There is a singularity at x = 0,
with error reduction factor bound (1

2 )0.2. Therefore, for the element that contains x = 0, we
use 11−graded refinement (m = ⌈ 1

0.1⌉). Numerical results are shown in Figs. 13-18.
By comparing the numerical results for the modified strategies with the results for the

original methods, we see the following. Both the MWEE and MACE strategies results in
highly accurate grid sequences: the convergence rate is very close to the optimal rate (Fig. 13).
Local error functionals on the final MWEE grid are more equally distributed than for the
MACE grid. For the MWEE strategy, the local error functional in the singular element is only
3 times larger than in the smooth elements. However, for the MACE strategy, that ratio is as
large as 1, 000 (Fig. 14). For the MWEE strategy, the number of elements, Nℓ, increases much

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 00:1–25
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Figure 13. Error versus DOF, α = 0.6 (singular case), p = 1.
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Figure 14. Local error functional, ǫ2i , versus grid location on the final grid, α = 0.6 (singular case),
p = 1.

faster than for the WEE strategy, which reduces the work considerably (Fig. 15). However,
there still exist a few small refinement steps. For the MACE strategy, it seems that the strategy
tends to do uniform refinement after several initial steps (Fig. 15(b)). Similar to the smooth
solution case, the MWEE strategy may need slightly more work to reach the same error bound
than the MACE strategy due to a few steps of small refinement (Fig. 17). However, since the
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Figure 15. Refined fraction of error functional, f(ropt), versus level, ℓ, and refined fraction of elements,
ropt, versus level, ℓ, α = 0.6 (singular case), p = 1.
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Figure 16. Number of elements, Nℓ, versus level, ℓ, α = 0.6 (singular case), p = 1.

MWEE strategy is slightly more accurate, the difference is very small. Again, the predicted
functional reduction factors are good approximations of the actual factors for both strategies
(Fig. 18).

4.3. Comparison with threshold-based refinement strategy

It is instructive to compare the MWEE and the MACE strategies with the threshold-based
refinement strategy that chooses to refine a fixed fraction of the error functional on each level,
i.e., fℓ(r) ≡ θ. The same graded grid refinement strategy is used for the elements that contain
a singularity. We find the following for our example problem.

If we choose to refine a fixed fraction of the global error that is too small (less than the average
of f(ropt) in the modified efficiency-based strategies), e.g., θ = 0.2 in Fig. 19, then the resulting
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Figure 17. Final error, EL, versus total work,
PL

ℓ=1
Nℓ, α = 0.6 (singular case), p = 1.
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Figure 18. Predicted functional reduction factor, γ(ropt), and actual functional reduction factor, g,
versus level, ℓ, α = 0.6 (singular case), p = 1.

grid sequence is almost of optimal accuracy, but the total work increases significantly since Nℓ

increases slowly. A threshold value that is too large (larger than the average of fℓ(ropt) in the
modified efficiency-based strategies), e.g., θ = 1.0 in Fig. 19, makes the number of elements,
{Nℓ}L

ℓ=1, increase faster, but the large threshold results in a less accurate grid sequence. This
implies that more total work is required to reach the same error bound. A threshold value that
is close to the average of f(ropt) in the modified efficiency-based strategies, namely, θ = 0.8 in
Fig. 19, results in a refinement process that performs similar to the efficiency-based refinement
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Figure 19. Efficiency-based and threshold-based refinement strategies: (a) Error versus DOF. (b) Final

error, EL, versus total work,
PL

ℓ=1
Nℓ. (Both α = 0.6 (singular case), p = 1.)

processes.
In conclusion, the efficiency-based refinement strategies automatically and adaptively choose

a nearly optimal fraction of the error to be refined. As a result, they generate nearly optimal
grid sequences in an efficient way, and there is no need to determine the optimal value of a
threshold parameter.

4.4. Results for p = 2
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Figure 20. Efficiency-based refinement strategies for a smooth problem with p = 2 (α = 3.1). (a) Error

versus DOF. (b) Final error, EL, versus total work,
PL

ℓ=1
Nℓ.

In this section, we briefly illustrate how the (M)WEE and (M)ACE strategies perform for
finite element polynomial order p = 2.

First, consider a smooth case with α = 3.1, such that u ∈ H3 and u /∈ H4. Error versus
DOF and total work are plotted for WEE and ACE in Fig. 20. Both strategies lead to global
refinement in every step for this example, and produce a sequence of grids that are very close
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Figure 21. Efficiency-based refinement strategies for a singular problem with p = 2 (α = 0.6). (a)

Error versus DOF. (b) Final error, EL, versus total work,
PL

ℓ=1
Nℓ.

to optimal radical grids.

Fig. 21 shows results for a highly singular case, with α = 0.6, such that u ∈ H1 and u /∈ H2.
WEE and ACE produce small refinements, but this is remedied by the MWEE and MACE
strategies, resulting, as before, in much less work for the modified strategies. It has to be noted,
however, that the MWEE and MACE grids contain many more elements than optimal graded
grids. This is probably due to the fact that the singularity is very strong for α = 0.6 and p = 2,
such that a geometrically graded grid with a grading factor of 1

2 does not decrease the grid
size fast enough in the vicinity of the singularity. Nevertheless, we can conclude that, within
the constraint of refinement based on splitting cells in two, the MWEE and MACE strategies
lead to an efficient refinement process.

5. Efficiency-based hp-refinement strategies in 1D

Assuming that we know a good approximation for the p-refinement error reduction factor
for each element, we can apply the efficiency-based refinement strategies to hp-refinement
processes.

5.1. hp-version of the (M)WEE and (M)ACE refinement strategies

Consider an hp-finite element method for our simple example problem (3). Let Th = {0 = x0 <
x1 < ... < xN = 1} be the grid and let p = {p1, p2, ..., pN} be the degrees of the polynomials in
the elements. Let uh be the Galerkin finite element solution of (3) and ǫ2j(pj) = ||u′−u′

s||20,τj
the

local error functional in element τj = [xj−1, xj ] with polynomial of degree pj . We choose local
Legendre polynomials as the modal base functions [3]. Then we have the following theorem:

THEOREM 2. [5] Let ǫ2j(pj) be the local error of the finite element solution of problem (12),
and let

τj = [xj−1, xj ], θj =

√
xi −√

xi−1√
xi +

√
xi−1

.
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Then

ǫ21(p1) ≈
h2α−1

1

p4α−2
1

. (19)

If θj (2 ≤ j ≤ N) is not close to 1, then

ǫ2j(pj) ≈







h
α−1/2
j

(

1 − θ2
j

2θj

)α−1
θ

pj

j

pα
j







2

. (20)

We only consider h-refinement for the first element, which contains the singularity. Then
we have the error functional reduction factor bound (1

2 )2α−1 as in (12). For an element τj

that does not contain the singularity, note that θj is small, and again we obtain the same
h-reduction factor bound, (1

2 )2pj , as before (see (10)). Moreover, if we double the degree of
polynomial pj , we obtain the p-reduction factor bound as follows:

ǫj(2pj)

ǫj(pj)
≈
(

θ
pj

j

2α

)2

. (21)

We can then develop an hp-version of the MWEE strategy as follows:
1) Order the elements such that the local error, ǫj , satisfies ǫ1 ≥ ǫ2 ≥ ... ≥ ǫNℓ

.
2) Let pmax be the maximal polynomial order to be used in the refinement process. Three

types of refinement are used, depending on the element. We use a graded grid with p = 1
for the elements containing a singularity, in such a way that the predicted error-reduction
factor attains 1

4 . (Note that a target reduction factor of up to 1
2pmax

could be used, but
we choose 1

4 for simplicity in our numerical tests.) For elements without a singularity, p-
refinement (doubling p) is used if the solution is locally smooth enough (which, in general,
can be detected a posteriori by comparing predicted and observed error-functional reduction
ratios) and p < pmax. Otherwise, h−refinement is used and the degree p is inherited by both
sub-elements. As before, we assume that the work of solving the linear systems is proportional
to the number of DOF. Then, doubling p or splitting the element into two elements with order
p has the same computational complexity.

3) Calculate the MWEE or MACE efficiency functions and find the optimal fraction of
elements to be refined, ropt.

4) Refine elements τj , 1 ≤ j ≤ roptNℓ.
5) Repeat.
For a general problem different from (3), it may be difficult to find a sharp approximation

formula for the error reduction in the case of p-refinement. Hence we are interested in seeking
a more general but possibly less sharp p-error reduction factor. Recall that for elements τj in
which the solution is smooth (at least in Hpj+1(τj) if order pj elements are used), we have

ǫ2j(pj) ≤ C(pj)h
2pj

j ||u||2
Hpj+1(τj)

.

More precisely, we have the following approximation [3]:

ǫ2j(pj) ≤ c

(

hj

2

)2pj 1

(2pj)!
||u||2

Hpj+1(τj)
. (22)
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Assuming that 1
(2pj)!

||u||2
Hpj+1(τj)

≤ M , where M is a constant, we obtain the following general

p-error reduction factor

ǫ2j(2pj)

ǫ2j(pj)
≈
(

hj

2

)2pj

(23)

for elements τj that do not contain a singularity.

5.2. Optimal geometric hp-grid for the model problem

Just as in the case of h-refinement, we seek some kind of optimal grid for comparison. Suppose
the locations of the grid points are given by

xj = qN−j , 0 < q < 1, j = 1, 2, ..., N. (24)

Let θj = θ =
1−√

q

1+
√

q , ∀j : 1 ≤ j ≤ N . It was shown in [5] that the optimal degree distribution

of p for these grid locations tends to a linear distribution with slope

so = (α − 1/2)
log q

log θ
. (25)

Furthermore, the optimal geometric grid factor q and linear slope so combination is given by

qopt = (
√

2 − 1)2, sopt = 2α − 1. (26)

5.3. Numerical results and comparisons
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Figure 22. Error versus DOF, α = 0.6 (singular case), p = 1.

We apply the hp-version MWEE and MACE strategies with the two p−refinement reduction
factors given by (21) and (23) to our model problem 3 with α = 0.6, and compare the numerical
results with the optimal geometric grid with q = qopt and q = 1

2 ; see Figs. 22 and 23. In the
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ℓ=1
Nℓ, α = 0.6 (singular case), p = 1.

numerical results, we carry out the refinement process until EL(uh, f) ≤ 5e−3 on final grid
level L.

Observe that the hp-finite element methods result in much faster error convergence rates
than the h-finite element method. Both the hp-MACE and hp-MWEE strategies result in a
highly accurate grid sequence with rate-of-error convergence very close to the geometrical grid
with grading number q = 0.5. Also, the refinement process is efficient, i.e., the number of DOF
increases fast w.r.t. the refinement level. Surprisingly, hp−refinement strategies using the more
general, but less accurate, error reduction factor (23), result in a better grid sequence than
with the more accurate Babuška factor, (21). The results are even better than the optimal
geometric grid sequence when the number of DOF is small. More work needs to be done to
verify whether the general factor (23) works well for more general problems.

6. 2D results

In this section, we explore the use of the proposed efficiency-based refinement strategies in two
spatial dimensions. In these initial considerations, we only discuss problems with sufficiently
smooth solutions.

6.1. Efficiency strategies in Rd

The efficiency-based WEE and ACE refinement strategies presented above can readily be
applied to problems in d spatial dimensions. Let Ω ⊂ Rd. Assume again that the error
estimator, F(uh, f), is equivalent to the H1 norm of u − uh: F(uh, f) ≈ ||u − uh||2H1(Ω).

Assume that the refinement process, in each step, splits elements into 2d sub-elements. Then
the element growth ratio, η(r), is given by

η(r) = 1 + (2d − 1) r. (27)
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Suppose the solution is sufficiently smooth in the whole domain. As in the 1D case, the
predicted functional reduction factor, γ(r), is given by

γ(r) = 1 − f(r) +

(

1

2

)2p

f(r). (28)

The WEE and ACE strategies can then be used to determine the fraction of elements to be
refined, ropt, according to Eqs. (5) and (7), respectively.

It should be noted here that the WEE measure may be problematic in dimensions higher
than one. This can be seen as follows. The WEE measure determines ropt by minimizing

MWEE ≡ η(r)
√

γ(r) over r ∈ [1/N, 1]. For smooth solutions, η(1/N) ≈ 1 and γ(1/N) ≈ 1,
such that MWEE(1/N) ≈ 1. For r = 1, however, it can be observed that η(1) = 2d and
γ(1) = (1

2 )2p, such that MWEE(1) = 2d−p. This means that MWEE > 1 when d > p. MWEE(r)
is often a very smooth function, so ropt is likely to be close to 1/N when d > p, resulting in
small refinements, which are inefficient. We, thus, expect that the WEE strategy may not be
efficient when d > p. We investigate this issue in the numerical results presented below. Also,
it can be noted that this problem does not occur for the ACE strategy.

6.2. Model problem and finite element method

(a) (b)

Figure 24. Adaptively refined grids using the ACE refinement strategy for 2D problems with p = 2.
(a) Single arc on a unit square domain. (b) Double arc on a unit square domain.

The following 2D finite element problem is considered to illustrate the efficiency-based
refinement strategies. We solve the Poisson boundary value problem (BVP)











−∆p = f in Ω,

p = g on ∂Ω,

Ω = (0, 1) × (0, 1),

(29)

with the right-hand side f and boundary conditions g chosen such that the solution is given
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by

p(r, θ) =











1 r ≤ r0,

h(r) r0 ≤ r ≤ r1,

0 r1 ≤ r.

(30)

Here, (r, θ) are the usual polar coordinates and h(r) is the unique polynomial of degree five
such that p ∈ C2(Ω). We choose r0 = 0.7 and r1 = 0.8. The solution of this test problem takes
on the unit value in the lower left corner of the domain, and is zero elsewhere, except for a
steep gradient in the thin strip 0.7 ≤ r ≤ 0.8. Fig. 24(a) shows the grid obtained after several
refinement steps for this model problem.

To illustrate the broad applicability of our refinement strategies, we solve this model problem
using a FOSLS finite element method, rather than the Galerkin method that was used for the
1D test problems. BVP (29) is rewritten as a first-order system BVP [8]















































−∇ · U = f in Ω,

U = ∇p

∇× U = 0

p = g on ∂Ω,

~τ · U =
∂g

∂τ
Ω = (0, 1) × (0, 1),

(31)

where U is a vector of auxiliary unknowns, and ~τ is the unit vector tangent to ∂Ω. The FOSLS
error estimator is given by F(ph, Uh; f) = ‖∇·Uh+f‖2

L2(Ω)+‖Uh−∇ph‖2
(L2(Ω))2+‖∇×Uh‖2

L2(Ω).

Under certain smoothness assumptions, the FOSLS error estimator is equivalent to the H1-
norm [8]: F(ph, Uh; f) ≈ ||p − ph||2H1(Ω) + ‖U − Uh‖2

(H1(Ω))2 .

6.3. Numerical results
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Figure 25. Efficiency-based refinement strategies for the 2D model problem with p = 1. (a) Error

versus DOF. (b) Final error, EL, versus total work,
PL

ℓ=1
Nℓ.

We present numerical results for the 2D model problem with p = 1 and p = 2 in Figs. 25
and 26, respectively. The figures show error versus DOF and total work for the WEE and ACE
refinement strategies, compared with global refinement in every step.

Copyright c© 2007 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2007; 00:1–25
Prepared using nlaauth.cls



24 DE STERCK ET AL.

1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1

1.5

2

2.5

log
10

(N)

lo
g 10

(E
)

ACE  :  −1.12x+4.13
WEE :  −1.10x+4.09
Global : −0.69x+3.55

(a)

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

total work

er
ro

r 
on

 fi
na

l g
rid

ACE
WEE
Global

(b)

Figure 26. Efficiency-based refinement strategies for the 2D model problem with p = 2. (a) Error

versus DOF. (b) Final error, EL, versus total work,
PL

ℓ=1
Nℓ.

For p = 1, the ACE strategy results in an efficient algorithm, but, as expected, the WEE
strategy produces many small refinement steps for this case where d > p, and is, thus, not
efficient (Fig. 25). Fig. 26 shows that, for p = 2 (d = p), both the ACE and WEE strategies
produce an efficient refinement process.

Fig. 24(b) shows the resulting grid when the ACE strategy is applied to a slightly more
complicated test problem, in which two circular steps are superimposed (u = 1 in the lower
left corner, u = 2 in the lower right corner, u = 3 where the two steps overlap, and u = 0 in
the top part of the domain). The adaptive refinement process adequately captures the error
generated at the steep gradients.

7. Conclusions

Two efficiency-based adaptive refinement strategies for finite element methods, WEE and
ACE, were discussed. The two strategies take both error reduction and work into account.
The two strategies were first compared for a 1D model problem. For the case of h-refinement
with smooth solutions, the efficiency-based strategies generate a highly accurate grid sequence
and an efficient refinement process. However, for singular solutions, the refinement process
becomes inefficient due to many steps of small refinements. Use of a graded grid for elements
with a singularity leads to significant improvement. For both the WEE and ACE strategies,
this modification saves a lot of work, and also results in a highly accurate grid sequence. For
the hp-refinement case, similar conclusions are obtained. However, for general problems, the
difficulty here may lie in how to find a good approximation for the p-error reduction factor.
Application to problems with spatial dimension larger than one shows that the WEE strategy is
inefficient when the dimension, d, is larger than the finite element order, p. The ACE strategy,
however, produces an efficient refinement process for any combination of d and p.

Future work will include application of these grid refinement strategies to problems with
singularities in multiple spatial dimensions. Also, an idea to be explored in the future is to
enhance the refinement strategies by allowing double or triple refinement for some elements,
and determining, in each step, the optimal number of elements to be refined once, twice and
thrice. More realistic measures for computational work must be considered, that may, for
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instance, take into account matrix assembly costs and multigrid convergence factors, and their
dependence on the finite element order and the spatial dimension of the problem. Another topic
of interest is the parallelization of the efficiency-based refinement strategies. Binning strategies
need to be considered in order to reduce the work for minimizing the efficiency measures, and
to reduce the communication between processors [4]. Also, load balancing issues are important
for parallel adaptive methods (see, e.g., [10]). After initial solution of a coarse level problem on
a single processor, the domain may be partitioned such that each parallel processor receives a
subdomain with approximately the same amount of error. This may be a fruitful strategy for
load balancing in that, as the grid becomes finer, the optimal refinement approaches global
refinement, which requires minimal load balancing. This will be explored in future research.
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