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FOSLL* METHOD FOR THE EDDY CURRENT PROBLEM WITH
THREE-DIMENSIONAL EDGE SINGULARITIES∗

EUNJUNG LEE† AND THOMAS A. MANTEUFFEL†

Abstract. In the case that the domain has reentrant edges, the standard finite element method
loses its global accuracy because of singularities on the boundary. To overcome this difficulty, FOSLL*
is applied in this paper. FOSLL* is a methodology for solving PDEs using the dual operator. Here,
a modified FOSLL* method is developed that employs a partially weighted functional and allows the
use of a standard finite element scheme without losing global accuracy.
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1. Introduction. The Maxwell equations are a set of fundamental equations
governing all macroscopic electromagnetic phenomena. It is known that the numerical
resolution of the full system of the Maxwell equations can be very expensive. However,
it is possible to use a simplified model that approximates the Maxwell equations and
explains particular problems encountered in electromagnetism. In many cases, one can
use the so-called eddy current model, which is obtained by neglecting the displacement
current in the Maxwell equations. Here, we consider the following two basic laws of
electricity and magnetism, which form the eddy current model:

Faraday’s Law :
∂μH

∂t
+ ∇× E = 0,

Ampère’s Law : ∇× H − σE = 0,

where E is the electric field intensity, H is the magnetic field intensity, μ is the
permeability, and σ is the conductivity. We consider two types of boundary conditions

n × E = 0, n · H = 0, and n · E = 0, n × H = 0,

where n is the unit external normal vector. The electric and magnetic field intensities,
E and H, which follow Faraday’s and Ampère’s laws with homogeneous boundary
conditions, satisfy

E ∈ H0(∇×) ∩H(∇ · σ), H ∈ H(∇×) ∩H0(∇ · μ)

or

E ∈ H(∇×) ∩H0(∇ · σ), H ∈ H0(∇×) ∩H(∇ · μ).

For a precise definition of the above Sobolev spaces, see section 2. In addition, if
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• μ and σ are smooth,
• either the domain is a convex polyhedron or the boundary is C1,1, and
• different types of boundary conditions do not meet at an edge with the inter-

nal angle > π/2,
then E ∈ (H1)3 and H ∈ (H1)3. Standard numerical techniques can be used to
approximately solve the equations under the above smoothness assumptions. For
example, first-order system least squares (FOSLS) with H1-finite element spaces
and multigrid methods can be used to solve these equations efficiently (cf. [3], [4],
[14]). The FOSLS method is based on minimization of the squared residual norm,
||LV −F||20, of the system LU = F, where L represents a system of linear first-order
equations, U a vector of unknowns, and F a vector of known functions. The standard
least squares method approximates unknown U in the given H1-finite element space
when the bilinear form corresponding to ||LV−F||20 is equivalent to the product H1-
norm, and this H1-equivalence is provided under sufficient smoothness assumptions
on the domain, coefficients, and data of the original problem.

In the presence of discontinuous coefficients, nonsmooth, nonconvex domain, or
certain irregular boundary conditions, the solution may not be in H1. This pre-
cludes the use of H1-conforming finite element spaces in least squares and Galerkin
formulations of the Maxwell equations.

A partial list of the remedies for this loss of H1-regularity in FOSLS can be found
in [1], [5], [18], and [24]. In [5], the first-order system LL* (FOSLL*) method was
introduced to overcome the difficulty that arises from discontinuous coefficients. The
basic idea of the FOSLL* method can be explained by looking at a linear system of
equations, Ax = b. The least squares method minimizes ||Ax − b||20, which leads
to the normal equations AtAx = Atb. The dual of this method involves the system,
AAty = b, where x = Aty. FOSLL* solves AAty = b by minimizing the functional
〈Aty, Aty〉 − 2 〈y,b〉 which is equivalent to minimizing ||Aty − x||20. For a given
first-order linear system of PDEs, LU = F, the FOSLL* method solves the system,
LL∗U∗ = F, by minimizing the functional, ||L∗U∗ − U||20, with the dual variable,
U∗, and the L2-adjoint operator, L∗, of L. Minimizing ||L∗U∗ −U||20 over U∗ in the
domain of L∗ is accomplished by solving the weak problem of finding U∗ such that

〈 L∗U∗, L∗V 〉 = 〈 U, L∗V 〉 = 〈 LU,V 〉 = 〈 F,V 〉(1.1)

for every V in the domain of L∗. Then, the solution we seek is U = L∗U∗. The
equation in (1.1) shows that we can solve the dual problem with the given data
(right-hand side) of the original problem without knowing the exact solution, U.

In [18], a modified FOSLL* method was developed that allows an accurate ap-
proximation using H1-conforming finite elements for the equations having singular
boundary points in two dimension. The results in [24] established a modification of
the FOSLS method for the problem in a two-dimensional nonconvex domain having ir-
regular boundary conditions. A weighted norm was used in [24] in order to reduce the
difficulties from dealing with the absence of the smoothness of the problem. As a dif-
ferent type of remedy, one of the most common approaches is to use Raviart–Thomas
or Nédélec edge elements as a finite element space [20]. These Raviart–Thomas and
Nédélec edge element spaces are in H(∇·) and H(∇×), respectively, but not in (H1)3.
Another potential form to reduce the difficulties from low regularity of the solution
was introduced in [2]. The analysis in [2] is based on a weak variational formula-
tion; the authors employ an H−1-norm least-squares approach in discrete space to
avoid dealing with the inf-sup condition. In [10], weighted regularization of time
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harmonic Maxwell equations in a polyhedral domain using a Galerkin formulation
was investigated. Introducing special weights inside the divergence integral allows
the approximation of nonsmooth solutions by an H1-conforming finite element. Er-
ror estimates under the assumptions of special finite element spaces were established
in [10].

As mentioned above, modifications to FOSLL* were developed that effectively
handle discontinuous coefficients in two and three dimensions and irregular boundary
points in two dimensions. However, there has not been any previous attempt to use
FOSLL* to handle the difficulty from reentrant edges in three dimensions. First, we
use standard FOSLL* to abate the difficulties from discontinuous coefficients, and
then modify it to deal with the reentrant edges. We develop a modified FOSLL*
using partially weighted norms in the functional to be minimized, so that we can use
H1-conforming finite elements. We do not consider the case that different types of
boundary conditions meet at an edge with an internal angle greater than π/2 or the
case in which the domain has conical points and vertices, where several reentrant edges
meet. However, we believe that the approach developed here can be easily extended
to those cases.

The approximate solution that the FOSLL* approach produces is of the form
L∗Uh, where Uh is an H1-conforming finite element. This approximation contains
the curl-free Nédélec edge elements. Our approach involves a substantial decrease
in computational cost over the curl-curl formulation because it is easy to implement
and the resulting linear systems are easily solved by algebraic multigrid methods [23]
even with higher order elements. We obtain the same error estimates as the Nédélec
element approach in the L2-norm and we can easily extend our approach to obtain the
H(∇×)-norm, while the approach in [2] provides only an L2-error estimate. Moreover,
we obtain error estimates in H(∇ · μ)- and H(∇ · σ)-norms, too.

There are similarities between the FOSLL* approach developed here and the
Galerkin formulation with the weighted regularization presented in [10]. While FOSLL*
differs in many respects from a Galerkin formulation, under special circumstances we
show that they are equivalent (see section 5). In [10], σ was assumed to be constant
and E was approximated. It is easy to see that if μ were assumed constant, the same
approach could be used to approximate for H. FOSLL* allows both σ and μ to be
discontinuous in a natural way. We obtain the same error estimates as the approach
in [10] while employing any standard H1-conforming finite element spaces.

In this paper, we consider the Maxwell equations with discontinuous coefficients
and irregular boundary. The error estimates established here hold for standard H1-
conforming finite element spaces and provide convergence rates that depend on the
power of the weighting used. Numerical tests show surprising agreement with the
theory. The model problem is given in section 2. In section 3, we introduce the FOSLS
and FOSLL* methods briefly and explain the difficulties arising from singularities. In
section 4, we modify standard FOSLL* and show that H1-conforming elements can
be used. A scaling is introduced and the connection to the Galerkin formulation in
a special case is explored in section 5. In section 6, the discretization error estimates
are obtained. The numerical results are given in section 7.

2. Model problem. Let Q be a polygon in R
2 with a reentrant corner, that is,

a corner that has inner angle bigger than π. Let I ∈ R be a bounded interval, and
consider the prototype domain, Ω := Q× I ⊂ R

3, which is a polyhedral cylinder. In
this paper, we restrict ourselves to the case where the domain has one reentrant edge;
however, the general case follows easily. By translation and rotation, we may suppose
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that the reentrant edge on the boundary that induces the singularity is on the z-axis.
Throughout this paper, we use 〈·, ·〉 and || · || to denote the L2-inner product and

norm, respectively. We use || · ||k to denote the standard Sobolev Hk-norm and | · |k
to denote the seminorm in Hk(Ω). Let b ∈ L∞(Ω) be a scalar function, and define

H0(∇×) ∩H(∇· b) := {u ∈ L2(Ω)3 | ||∇× u||2+||∇· bu||2<∞, n × u = 0 on ∂Ω},

H(∇×) ∩H0(∇· b) := {u ∈ L2(Ω)3 | ||∇× u||2+||∇· bu||2<∞, n · u = 0 on ∂Ω}.

Define Hk
β (Ω) as the weighted Sobolev space of functions u such that

||u||2k,β =

k∑
|m|=0

∫
Ω

r2(β+|m|−k) |Dmu|2 dΩ < ∞,

where r := r(x) is the distance of x ∈ Ω from the reentrant edge. We define partially
weighted norms to use in our modification of the FOSLL* functional, for u,v ∈ L2(Ω)3

and p, q ∈ H0
β(Ω), as

||(ut, p)t||2β := ||u||2 + ||p||20,β ,(2.1)

||(ut, p,vt, q)t||2β := ||u||2 + ||p||20,β + ||v||2 + ||q||20,β .(2.2)

In the above, note that only the scalar terms, p and q, involve weighted norms.
Now, consider the following eddy current problem:

∂μH

∂t
+ ∇× E = 0 in Ω,(2.3)

∇× H − σE = 0 in Ω,

with E(x, t) the electric field intensity, H(x, t) the magnetic field intensity, μ(x) the
permeability, and σ(x) the conductivity. We assume that coefficients μ(x) and σ(x)
are piecewise smooth, positive real valued, and bounded; that is, they satisfy

μ0 ≤ μ(x) ≤ μ1, σ0 ≤ σ(x) ≤ σ1 for all x ∈ Ω,(2.4)

for positive constants μ0, μ1, σ0, and σ1. We consider two types of boundary condi-
tions,

type I : n × E = 0, n · H = 0,

type II : n · E = 0, n × H = 0.

Type I corresponds to perfectly conducting walls, while type II corresponds to per-
fectly insulating walls. Using the backward Euler approximation in time gives

μ

δt
H + ∇× E =

μ

δt
Hold,

where Hold is the solution at the previous time step. Equation (2.3) implies

∇ · σE = 0, ∇ · μH = ∇ · μHold.(2.5)
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Without loss of generality, we assume ∇ · μHold = 0. The resulting system then is

−σE + ∇× H = 0, ∇× E + μ̃H = μ̃Hold,

∇ · σE = 0, ∇ · μH = 0,(2.6)

where μ̃ = μ/δt. Since δt is a constant, ∇ · μ̃H = 0. Let δt−1 be absorbed into
μ and μ̃ be replaced with μ. It is known that there exists a solution, (E,H), of
the system (2.6) in (H(∇×) ∩H(∇ · σ)) × (H(∇×) ∩H(∇ · μ)) satisfying type I or
II boundary conditions (cf. [14]). From now on, we consider only the case that the
domain is surrounded by perfectly conducting walls, since the procedure is the same
for perfectly insulating walls. Moreover, the case of mixed boundary conditions can
be handled in a similar fashion.

In this paper, c is a generic term that is used to denote various constants. Its de-
pendence on other quantities is indicated when necessary. For convenience of notation,
superscript t for the vector transpose is omitted.

3. FOSLS and FOSLL*. In this section, we give a brief introduction to FOSLS
and FOSLL* to explain the basic ideas and to show how they suffer in the presence
of singularities. First, we introduce slack variables. Even though system (2.6) can
be solved by itself, we extend the system since the extended system provides H1-
equivalence to the bilinear form of ||L∗U∗−U|| in FOSLL* under sufficient smoothness
assumptions. We extend system (2.6) by adding slack variables, s and k, to yield

−σE + ∇× H − ∇k = 0 in Ω,
− a1s + ∇ · μH = 0 in Ω,

∇× E − ∇s + μH = μHold in Ω,
∇ · σE + a2k = 0 in Ω,

n × E = 0, n · H = 0, k = 0 on ∂Ω,

with nonnegative constants a1 and a2. The above system can be rewritten as

LU = L(E, s,H, k) = F in Ω,

where

LU =

⎡
⎢⎢⎣

−σI 0 ∇× −∇
0 −a1 ∇ · μ 0

∇× −∇ μI 0
∇ · σ 0 0 a2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

E
s
H
k

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0

μHold

0

⎤
⎥⎥⎦ = F.(3.1)

The domain of L is

D(L) = (H0(∇×) ∩H(∇ · σ)) ×H1(Ω)/R × (H(∇×) ∩H0(∇ · μ)) ×H1
0 (Ω),

which is a Hilbert space under the norm

||(E, s,H, k)||2L := ||E||2 + ||∇ × E||2 + ||∇ · σE||2 + ||s||21

+||H||2 + ||∇ × H||2 + ||∇ · μH||2 + ||k||21.(3.2)
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The range of L is L2(Ω)8. It is easily shown that s = 0 and k = 0 if (E, s,H, k) is
the solution of (3.1) in D(L) as long as the constants a1 and a2 are nonnegative. The
FOSLS method minimizes the least-squares functional

F(U;F) = || LU − F ||2

in the weak sense, that is, we look for the solution of the corresponding weak form as
follows: Find U ∈ D(L) satisfying

〈 LU,LV 〉 = 〈 F,LV 〉 for all V ∈ D(L).(3.3)

The FOSLL* approach solves the corresponding dual problem

L∗U∗ = L∗(U , p,V, q) = U in Ω,(3.4)

where the L2-adjoint operator L∗ of L is defined by

L∗U∗ =

⎡
⎢⎢⎣

−σI 0 ∇× −σ∇
0 −a1 ∇· 0

∇× −μ∇ μI 0
∇· 0 0 a2

⎤
⎥⎥⎦
⎡
⎢⎢⎣

U
p
V
q

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

E
s
H
k

⎤
⎥⎥⎦ = U,(3.5)

and L∗ : D(L∗) → L2(Ω)8 with

D(L∗) = (H0(∇×) ∩H(∇·)) ×H1(Ω)/R × (H(∇×) ∩H0(∇·)) ×H1
0 (Ω).

To solve the dual problem we minimize the dual functional

F∗(U∗;U) = || L∗U∗ − U ||2(3.6)

on D(L∗). The corresponding weak form is the following: Find U∗ ∈ D(L∗) satisfying

〈 L∗U∗,L∗V∗ 〉 = 〈 U,L∗V∗ 〉 = 〈 F,V∗ 〉 for all V∗ ∈ D(L∗),(3.7)

where U is the solution of (3.1) for given F. Equation (3.7) shows that we can solve
the dual problem with the given data, F, of the original problem without knowing
the solution, U. Then, we obtain the solution from (3.4), U = L∗U∗.

Lemma 3.1. There exists a unique solution, U ∈ D(L), satisfying (3.3).
Proof. Let (E, e,H, h) ∈ D(L). Using the same manner which was used to prove

Lemmas 3.4 and 3.6 in [12] for E, H and the Poincaré inequality for e, h, we have

||(E, e,H, h)||2L ≤ c
(
||∇ × E||2 + ||∇· σE||2 + |e|21 + ||∇ ×H||2 + ||∇· μH||2 + |h|21

)
.

Since n × E = 0 and h = 0 on the boundary, the conditions in (2.4) provide

μ−1
1 ||∇ × E||2 ≤

〈
μ−1∇× E,∇× E −∇e + μH

〉
− 〈∇× E,H〉 ,

σ1
−1||∇ ×H||2 ≤

〈
σ−1∇×H,−σE + ∇×H −∇h

〉
+ 〈∇ ×H,E〉 .

The above two inequalities, together with Hölder’s inequality and the ε-inequality,
give

||∇ × E||2 + ||∇ ×H||2 ≤ c
(
||∇ × E −∇e + μH||2 + || − σE + ∇×H −∇h||2

)
.

Consider the following several different cases for a1 and a2:
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(a) If a1 �= 0 and a2 �= 0, then, by Green’s formula,

||∇ · σE||2 = 〈∇ · σE,∇ · σE + a2h〉 + a2 〈σE,∇h〉 ,(3.8)

||∇ · μH||2 = 〈∇ · μH,∇ · μH − a1e〉 − a1 〈μH,∇e〉 ,(3.9)

||∇e||2 = 〈∇e,−∇× E + ∇e− μH〉 + 〈∇e, μH〉 ,(3.10)

||∇h||2 = 〈∇h, σE −∇×H + ∇h〉 − 〈∇h, σE〉 .(3.11)

Multiply (3.10) by a1 and (3.11) by a2 and add to (3.9) and (3.8), respectively.
Again use Hölder’s inequality and the ε-inequality to obtain

||∇ · σE||2 + ||∇ · μH||2 + ||∇e||2 + ||∇h||2 ≤ c ||L(E, e,H, h)||2.

(b) If a1 = a2 = 0, taking Hölder’s and Poincaré inequalities in (3.10) and (3.11)
implies ||∇e||2 + ||∇h||2 ≤ c ||L(E, e,H, h)||2.

(c) If only one of a1 and a2 is 0, for example a1 = 0 and a2 �= 0, then we use the
same calculation in case (a) for ∇e. Multiply (3.11) by a2 and add it to (3.8)
to get ||∇ · σE||2 + ||∇h||2 ≤ c (||∇ · σE + a2h||2 + || − σE +∇×H −∇h||2).

Thus, ||(E, e,H, h)||2L ≤ c ||L(E, e,H, h)||2, so that L is coercive. It is easy to prove
the continuity of L by using the triangle inequality. Therefore, by the Lax–Milgram
theorem, there exists the solution of (3.3).

Now, we consider the dual weak problem (3.7). In a similar manner, we can show
the existence and uniqueness of the solution for (3.7).

Lemma 3.2. There exists a unique solution, U∗ ∈ D(L∗), satisfying (3.7).
Corollary 3.3. The operator L : D(L) → L2(Ω)8, defined in (3.1), is bijective.
Proof. In Lemmas 3.1 and 3.2, it is proved that L and L∗, defined in (3.1) and

(3.5), respectively, are coercive. Therefore, L and L∗ are injective. The coercivity
and continuity of L provide that L is a closed operator. Then, by the closed range
theorem (cf. [25]), the injectivity of L∗ induces the surjectivity of L. Thus, L is
bijective.

Corollary 3.4. The operator L∗ : D(L∗) → L2(Ω)8, defined in (3.5), is bijec-
tive.

Proof. Since L is a closed operator, by Lemma 2.1 in [5] and Corollary 3.3, L∗ is
bijective.

Remark 3.5. Corollary 3.4 implies that, for given F ∈ L2(Ω)8, there exists a
unique solution U∗ ∈ D(L∗) satisfying the weak form (3.7).

We consider several cases that incur difficulties in approximately solving the
eddy current problem with H1-conforming finite elements. Suppose that there are
no boundary singularities but μ and σ are not smooth. Because the coefficients are
not smooth, D(L) is not imbedded into H1(Ω)8. In fact, H1(Ω)8 is a closed, proper
subspace of D(L). Therefore, H1-conforming finite element spaces cannot be used
to approximate the solution of system (3.1). The FOSLL* method may be used to
overcome this difficulty. The efficiency of FOSLL* in this context can be seen by
observing the dual operator L∗ in (3.5). All of the discontinuous coefficients inside
the derivatives in the L system are outside the differential operators in the L∗ sys-
tem. Accordingly, we have D(L∗) imbedded into H1(Ω)8. Now, we suppose that μ
and σ are not smooth and there is a boundary singularity. Although we can resolve
the difficulty with the discontinuous coefficients by applying the standard FOSLL*
method, the boundary singularity still leads to

H0(∇×) ∩H(∇·) �⊂ H1(Ω)3 and H(∇×) ∩H0(∇·) �⊂ H1(Ω)3.
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In [18], a modification of the FOSLL* method was developed that overcomes this
difficulty for the general scalar elliptic PDEs in the plane. In this paper, we introduce
a different type of modification of FOSLL* to mitigate the difficulties with boundary
singularities in three space dimensions.

4. The modified FOSLL* method. In this section, we present a modified
FOSLL* functional in which the second and fourth equations in (3.5) involve weighted
norms, that is, the functional is given by ‖L∗U∗ −U‖2

α. Note that we have used the
partially weighted norm that was introduced in (2.2). In subsection 4.2, we show
how this modified FOSLL* functional works in the presence of singularities. Before
getting into the details about the modified FOSLL* functional, we first show several
Poincaré-type inequalities which are useful in many places. The first lemma appears
in [15].

Lemma 4.1. Let Ω = Ω1 × (a, b) with Ω1 = {(r, θ)|0 < r < R < 1, 0 < θ < ω, 0 <
ω ≤ 2π}. If q ∈ H1

β+1(Ω) vanishes on ∂Ω, then, for any β,

||q||0,β ≤ c ||∇q||0,β+1.(4.1)

Using the above lemma, we show the following.
Lemma 4.2. Assume that Ω is bounded, Lipschitz continuous, and simply con-

nected. Let φ ∈ H0(∇×) ∩ H(∇·); then there exists a constant c such that, for any
0 ≤ α ≤ 1,

||φ|| ≤ c (||∇ × φ|| + ||rα∇ · φ||) .

Proof. Let φ ∈ H0(∇×) ∩H(∇·). By Lemma 3.4 in [12], φ can be written as

φ = ϕ + ∇ξ,(4.2)

where ϕ ∈ H0(∇×) ∩H(∇·), ∇ · ϕ = 0, and ξ ∈ H1
0 (Ω) satisfies Δξ = ∇ · φ. Using

the Cauchy–Schwarz inequality, Lemma 4.1, and the assumption on α yields

||∇ξ||2 = 〈∇ξ,∇ξ〉 = 〈−∇ · φ, ξ〉 ≤ ||rα∇ · φ|| ||r−αξ||

≤ c||rα∇ · φ|| ||r1−α∇ξ|| ≤ c||rα∇ · φ|| ||∇ξ||.(4.3)

Now, (4.2), (4.3), and Lemma 3.4 in [12] imply

||φ|| ≤ c(||ϕ|| + ||∇ξ||) ≤ c(||∇ × ϕ|| + ||rα∇ · φ||) = c(||∇ × φ|| + ||rα∇ · φ||).

Lemmas 4.3 and 4.4 basically claim the same inequality in Lemma 4.1 without
the zero boundary condition.

Lemma 4.3. Assume Ω is the same as in Lemma 4.1 and β > −1. For p ∈
H1

β+1(Ω), there exists a constant c such that

||p||0,β ≤ c (||p||0,β+1 + ||∇p||0,β+1).

Proof. Let R0 = R
4 , and let χ be a smooth function defined in Ω such that

χ(r) = 1 when r < R0 and χ(r) = 0 when r > 2R0 and |χ′| ≤ cR−1
0 for some constant

c. Since 1 = χ + 1 − χ,∫ R

0

r2β |p|2rdr =

∫ R

0

r2β |χp + (1 − χ)p|2 rdr ≤ 2

∫ R

0

r2β
(
|χp|2 + |(1 − χ)p|2

)
rdr.
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By the modified Hardy’s inequality in [16], for β > −1,∫ R

0

r2β |χp|2r dr ≤ c

∫ R

0

r2β+2

∣∣∣∣∂(χp)

∂r

∣∣∣∣
2

r dr ≤ c

∫ 2R0

0

r2β+2

(
1

R2
0

|p|2 +

∣∣∣∣∂p∂r
∣∣∣∣
2
)
r dr.

Since (1 − χ)p has nonzero values only on (R0, R),∫ R

0

r2β |(1 − χ)p|2r dr =

∫ R

R0

r2β |(1 − χ)p|2r dr =

∫ R

R0

r−2 r2β+2|(1 − χ)p|2r dr

≤ R0
−2

∫ R

R0

r2β+2|(1 − χ)p|2r dr ≤ R0
−2

∫ R

0

r2β+2|p|2r dr.

Hence ∫
Ω

r2β |p|2dΩ ≤ c R−2

∫
Ω

r2β+2|p|2dΩ + c

∫
Ω

r2β+2|∇p|2dΩ.

To handle ||p||0,β+1 in Lemma 4.3, we prove the following lemma.
Lemma 4.4. Let p ∈ H1(Ω) satisfying ||∇p||β+1−ε < ∞; then there exist con-

stants b and c such that, for any β > −1 and ε > 0,

||p− b||0,β ≤ c ||∇p||0,β+1−ε.

Proof. Here, we show an outline of the proof. The details can be found in [17].
Let p ∈ H1(Ω) satisfy the assumption and consider the following expression for P :

p(r, θ, z) − p(r0, θ0, z0)

= p(r, θ, z) − p(r, θ0, z) + p(r, θ0, z) − p(r0, θ0, z) + p(r0, θ0, z) − p(r0, θ0, z0)

=

∫ θ

θ0

∂p

∂θ̃
(r, θ̃, z) dθ̃ +

∫ r

r0

∂p

∂r̃
(r̃, θ0, z) dr̃ +

∫ z

z0

∂p

∂z̃
(r0, θ0, z̃) dz̃.

Multiply by r
β+ 1

2
0 and perform the integration

∫
Ω
r0dr0dθ0dz0 on both sides:

c1p(r, θ, z) =

∫
Ω

r
β+ 1

2
0 p(r0, θ0, z0)r0dr0dθ0dz0 +

∫
Ω

r
β+ 1

2
0

{∫ θ

θ0

∂p

∂θ̃
(r, θ̃, z) dθ̃

+

∫ r

r0

∂p

∂r̃
(r̃, θ0, z) dr̃ +

∫ z

z0

∂p

∂z̃
(r0, θ0, z̃) dz̃

}
r0dr0dθ0dz0,(4.4)

where c1 =
∫
Ω
r
β+ 1

2
0 r0dr0dθ0dz0. Let

b =
1

c1

∫
Ω

r
β+ 1

2
0 p(r0, θ0, z0) r0dr0dθ0dz0;

then |b| ≤ c||p|| < ∞. Subtracting b from both sides in (4.4), changing the order of

integration, inserting r̃
−1+ε

2 · r̃ 1−ε
2 = 1 in order to group r̃

1−ε
2 with the ∂p

∂r̃ term, using
the Cauchy–Schwarz inequality, and squaring both sides yield

|p(r, θ, z) − b|2 ≤ c

{∫ ω

0

∣∣∣∣∂p∂θ̃ (r, θ̃, z)

∣∣∣∣
2

dθ̃ +

∫ ω

0

∫ R

0

r̃2β+3

∣∣∣∣∂p∂r̃ (r̃, θ0, z)

∣∣∣∣
2

dr̃dθ0

+

∫ ω

0

{
Rε

ε

∫ R

r

r̃1−ε

∣∣∣∣∂p∂r̃ (r̃, θ0, z)

∣∣∣∣
2

dr̃ +

∫ R

0

r2β+3
0

∫ b

a

∣∣∣∣∂p∂z̃ (r0, θ0, z̃)

∣∣∣∣
2

dz̃dr0

}
dθ0

}
.
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To establish the weighted L2-norm of |p− b|, multiply by r2β and take an integration
over Ω. Then, we have

∫
Ω

r2β |p(r, θ, z) − b|2dΩ ≤ c

∫
Ω

r2β+2

(∣∣∣∣1r ∂p∂θ
∣∣∣∣
2

+

∣∣∣∣∂p∂r
∣∣∣∣
2

+

∣∣∣∣∂p∂z
∣∣∣∣
2
)

+ r2β+2−ε

∣∣∣∣∂p∂r
∣∣∣∣
2

dΩ

≤ c

∫
Ω

r2β+2−ε|∇p |2dΩ,

where c = c(Ω, β, ε, (β + 1)−1, ε−1) → ∞ as ε → 0 and β → −1.
Lemma 4.5. Assume that Ω is bounded, Lipschitz continuous, and simply con-

nected. Let ψ ∈ H(∇×) ∩ H0(∇·); then there exists a constant c such that, for any
0 ≤ α < 1,

||ψ|| ≤ c (||∇ × ψ|| + ||rα∇ · ψ||).

Proof. The proof follows similarly to Lemma 4.2 using Lemmas 4.3 and 4.4.
If a vector function is in H1 and satisfies certain boundary conditions, then the

sum of norms of div and curl is equal to the semi-H1-norm.
Lemma 4.6. Let Ω be a bounded polyhedral domain in R

3. If v ∈ H1(Ω)3 and
satisfies n · v = 0 or n × v = 0 on the boundary ∂Ω, then

||∇ · v||2 + ||∇ × v||2 = ||∇v||2.

Proof. See [7] and [8].
The basic idea of the modification here is to use a weighted norm in certain

terms of the least squares functional in (3.6). Using a weighted norm allows the
existence of a sequence, {Un} ⊂ D(L∗) ∩ H1(Ω)8, converging to the nonsmooth
solution, U∗ ∈ D(L∗), in the functional norm. Consider the operator L∗ blockwise.
Let DA = H0(∇×) ∩H(∇·) and DB = H(∇×) ∩H0(∇·) and define

A =

[
∇× −μ∇
∇· 0

]
and B =

[
∇× −σ∇
∇· 0

]
.(4.5)

We first show that there exist sequences {Xn} and {Yn} in H1(Ω)4 such that

||AXn − F ||α −→ 0 and ||BYn −G||α −→ 0 as n −→ ∞,(4.6)

for given F,G ∈ L2(Ω)4 and the norm || · ||α defined in (2.1). We again emphasize that
this notation implies that only the scalar term, the term involving ∇·, is weighted.
Then, we discuss the density of H1-functions in DA and DB under weighted norms.

4.1. The density arguments in DA and DB. As a first step to show the
existence of H1-sequences satisfying (4.6), we apply the well-known L2-decomposition
and show several lemmas. The next lemma provides the decomposition of L2(Ω)3.

Lemma 4.7. Every function w ∈ L2(Ω)3 has the orthogonal decomposition

w = ∇× u + ∇ψ,

where ψ ∈ H1(Ω)/R is the only solution of 〈∇ψ,∇ξ〉 = 〈w,∇ξ〉, for any ξ ∈ H1(Ω),
and u ∈ H1(Ω)3 satisfies ∇ · u = 0.

Proof. See [12] for details.
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Lemma 4.8. For given F ∈ L2(Ω)4, there exists a unique solution, X ∈ DA ×
H1(Ω)/R , of AX = F .

Proof. The result follows from a proof similar to the proofs of section 3.
Analogously, we show the following lemma.
Lemma 4.9. For given G ∈ L2(Ω)4, there exists a unique solution, Y ∈ DB ×

H1
0 (Ω), of BY = G.

Now, we provide some decompositions in DA and DB .
Theorem 4.10. Given ũ ∈ DA, there exists u ∈ H1(Ω)3 ∩DA and φ ∈ H1

0 (Ω)
such that

ũ = u + ∇φ.

Proof. Use Lemma 4.7 to write ∇ × ũ = ∇ × u0 + ∇ψ with u0 ∈ H1(Ω)3 and
ψ ∈ H1(Ω)/R. Taking the divergence of the above equation leads to the conclusion
that ψ = 0. Thus, ∇ × (ũ − u0) = 0, which implies that ũ = u0 + ∇φ0, for some
φ0 ∈ H1(Ω)/R. Now, 0 = n × ũ = n × u0 + n ×∇φ0. Since u0 ∈ H1(Ω)3, we have

n × u0 ∈ H
1
2 (∂Ω)3. Thus, n × ∇φ0 = −n × u0 on ∂Ω, which implies trace(φ0) ∈

H
3
2 (∂Ω). Let φ2 ∈ H2(Ω) satisfy trace(φ0) = trace(φ2). Then, let

u = u0 + ∇φ2, φ = φ0 − φ2.

Since n ×∇φ = 0, the theorem is proved.
Theorem 4.11. Given ṽ ∈ DB, there exists v ∈ H1(Ω)3 ∩DB and ψ ∈ H1(Ω)

with n · ∇ψ = 0 on ∂Ω such that

ṽ = v + ∇ψ.

Proof. The proof is similar to the proof of Theorem 4.10. Here, we construct ψ
satisfying n · ∇ψ = 0 on the boundary.

In the domain with a reentrant edge, the solution of the Poisson equation

−Δφ = f

for f ∈ L2(Ω), with a Dirichlet or Neumann boundary condition is, in general, not
in H2(Ω). It is in H2

loc(Ω); that is, φ ∈ H2(S) for any open subset S of Ω such that
its closure S does not meet the reentrant edge (cf. [13]). The solution, φ, is also in
H1+γ(Ω) for some γ ∈ (0, 1). A more precise measure is given by the weighted Sobolev
space. This solution φ is in H2

β(Ω) with β related to the angle of the reentrant edge

(cf. [15], [21]). In the following theorems, we establish H1-sequences satisfying (4.6).
From this point forward, if not mentioned explicitly, Ω is the prototype domain

which was defined in section 2.
Theorem 4.12. For given F ∈ L2(Ω)4 and an operator A defined in (4.5), there

exists a sequence {Xn} ⊂ H1(Ω)4 ∩
(
DA ×H1(Ω)/R

)
such that

‖AXn − F‖α −→ 0 as n → ∞,

where α > 1 − λ, λ = π/ω, and ω is the angle of the reentrant edge.
Proof. Let F = (f1, f2) ∈ L2(Ω)4. From Lemma 4.8, we have ũ ∈ DA and

p̃ ∈ H1(Ω)/R satisfying ∇ × ũ − μ∇p̃ = f1 and ∇ · ũ = f2. By Theorem 4.10, ũ is
decomposed of ũ = u+∇φ, where u ∈ H1(Ω)3∩DA and φ ∈ H1

0 (Ω). Here, φ satisfies{
∇ · ∇φ = −∇ · u + f2 in Ω,

φ = 0 on ∂Ω.
(4.7)
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Given α > 1 − λ, choose β such that β < α and |β − 1| < λ. It is known that the
solution φ is in H1(Ω) ∩ H2

β(Ω). Define Ωn = ({(x, y)| 1/(2n) ≤ r ≤ 1/n} × R) ∩ Ω

with r =
√
x2 + y2 and δn(r) a smooth function satisfying

δn(r) =

{
0 if r < 1/(2n),
1 if r > 1/n,

(4.8)

where | δ′n | ≤ c1n and | δ′′n | ≤ c2n
2, for some positive constants c1 and c2. Define

φn = δnφ; then φn ∈ H2(Ω) (cf. [13]). Therefore, un := u + ∇φn is in H1(Ω)3 ∩DA

and satisfies

∇× un − μ∇p̃ = ∇× u − μ∇p̃ = ∇× ũ − μ∇p̃ = f1.

Using the triangle inequality several times and the properties of δn yields

‖∇ · un − f2‖2
0,α = ‖∇ · (u +∇φn) −∇ · (u +∇φ)‖2

0,α =

∫
Ω

r2α|Δ((δn(r) − 1)φ)|2 dΩ

=

∫ ∫ (∫ 1
2n

0

r2α|Δφ|2 rdr +

∫ 1
n

1
2n

r2α|Δ((δn(r) − 1)φ)|2 rdr

)
dθdz

≤ c

(
1

2n

)2(α−β)

||Δφ||20,β + c

∫
Ωn

r2α
(
|Δφ|2 + n4|φ|2 + n2

(
|∂xφ|2 + |∂yφ|2

))
dΩ

≤ c n−2(α−β)|φ|22,β + c n−2(α−β)||φ||22,β = c n−2(α−β)||φ||22,β .

The right-hand side goes to 0 as n goes to infinity. By letting Xn := (un, p̃), the proof
is completed.

We can show the next theorem in the same manner.
Theorem 4.13. For given G ∈ L2(Ω)4 and an operator B defined in (4.5), there

exists a sequence {Yn} ⊂ H1(Ω)4 ∩
(
DB ×H1

0 (Ω)
)

such that

‖BYn −G‖α −→ 0 as n → ∞,

where α > 1 − λ, λ = π/ω, and ω is the angle of the reentrant edge.
Now, we state some density results. Define

DAα := {u ∈ L2(Ω)3 | ||∇ × u|| + ||∇ · u||0,α < ∞, n × u = 0 on ∂Ω},(4.9)

DBα := {u ∈ L2(Ω)3 | ||∇ × u|| + ||∇ · u||0,α < ∞, n · u = 0 on ∂Ω},(4.10)

which are Hilbert spaces under the norm ||u||DAα
= ||u||DBα

:= (||u||2 + ||∇× u||2 +

||∇ · u||20,α)
1
2 . The density statement for DAα

can be found in [8], [10], and [11] for
α ∈ (1 − λ, 1). Here, we extend the density results to α > 1 − λ.

Theorem 4.14. DAα ∩ H1(Ω)3 is dense in DAα
when α > 1 − λ, and DBα

∩
H1(Ω)3 is dense in DBα

when α > 1 − λ.
Proof. We separate the proof into two cases. First, we consider 1 − λ < α < 1.

Let the operator A be defined as in (4.5) and let (u, p) ∈ DAα ×H1(Ω)/R; then,

‖A(u, p)‖2
α = ‖∇ × u − μ∇p‖2 + ||∇ · u||20,α ≥ μ0||(1/

√
μ)∇×u −√μ∇p||2+ ||∇·u||20,α

≥ c(||∇ × u||2 + ||∇p||2 + ||∇ · u||20,α) ≥ c(||u||2DAα
+ ||p||21).
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In the above, Lemma 4.2 and Theorem 4.12 imply the density in DAα
for 1−λ < α < 1.

Now, we consider the case α ≥ 1. Let u ∈ DAα ; then, similarly to Theorem 4.10,
we can show that u is decomposed in the form of u = u0 +∇φ, where u0 ∈ H1(Ω)3 ∩
DAα and φ ∈ H1

0 (Ω). Let Ωn and the smooth cut-off function δn(r) be defined as in
the proof of Theorem 4.12, and define Ωñ = ({(x, y)|r ≤ 1/n} × R) ∩Ω. Define un =
u0 +∇(δn(r)φ); then un is in H1(Ω)3 ∩DAα

. Since φ ∈ H1
0 (Ω) and ‖∇ ·∇φ‖0,α < ∞,

it is easy to see that

‖Δφ‖0,α,Ωñ → 0 and ‖φ‖1,Ωñ → 0(4.11)

as n → ∞, where the subscript Ωñ means the integration over Ωñ. Therefore, the
triangle inequality and the property of δn(r) yield

‖u − un‖2
DAα

= ‖u − un‖2 + ‖∇ × (u − un)‖2 + ‖∇ · (u − un)‖2
0,α

= ‖∇((1 − δn(r))φ)‖2 + ‖∇ · ∇((1 − δn(r))φ)‖2
0,α

≤ c
(
‖δ′nφ‖2

0,Ωn
+‖∇φ‖2

0,Ωñ
+‖Δφ‖2

0,α,Ωñ
+‖δ′′nφ‖2

0,α,Ωn
+‖r−1δ′nφ‖2

0,α,Ωn
+‖δ′n∇φ‖2

0,α,Ωn

)
.

We have the second and third terms in the last line of the above go to 0 by (4.11)
and we have ‖r−1δ′nφ‖0,α,Ωn

≤ c‖δ′′φ‖0,α,Ωn
by the property of δn. Since |δ′n(r)| ≤

cn, 1/(2n) ≤ r ≤ 1/n on Ωn, and α ≥ 1, the sixth term in the above is

‖δ′n∇φ‖2
0,α,Ωn

≤ c‖rαn∇φ‖2
0,Ωn

≤ c‖rα−1∇φ‖2
0,Ωn

= c‖∇φ‖2
0,Ωn

→ 0.

We now focus on the following two terms: By Lemma 4.3 and α ≥ 1, for ε > 0,

‖δ′nφ‖2
0,Ωn

+ ‖δ′′nφ‖2
0,α,Ωn

≤ c
(
‖nφ‖2

0,Ωn
+ ‖rαn2φ‖2

0,Ωn

)
≤ c

(
‖r−1φ‖2

0,Ωn
+ ‖rα−2φ‖2

0,Ωn

)
≤ c(1/2n)−2ε

(
‖r−1+εφ‖2

0,Ωn
+ ‖rα−2+εφ‖2

0,Ωn

)
≤ cn2ε

(
‖r−1+εφ‖2

0,Ωñ
+ ‖rα−2+εφ‖2

0,Ωñ

)
≤ cn2ε

(
‖rεφ‖2

0,Ωñ
+ ‖rε∇φ‖2

0,Ωñ
+ ‖rα−1+εφ‖2

0,Ωñ
+ ‖rα−1+ε∇φ‖2

0,Ωñ

)
≤ cn2ε

(
n−2ε(‖φ‖2

0,Ωñ
+ ‖∇φ‖2

0,Ωñ
) + n−2(α−1+ε)(‖φ‖2

0,Ωñ
+ ‖∇φ‖2

0,Ωñ
)
)
≤ c‖φ‖2

1,Ωñ
.

Hence, we proved that ‖u − un‖2
DAα

→ 0 as long as α > 1 − λ. The density DBα
∩

H1(Ω)3 in DBα follows the same process.

4.2. The existence of H1-sequences. So far, we have obtained H1-sequences
satisfying (4.6). For given (E, s,H, k), we consider the minimization of the functional
(3.6) in the partially weighted norm from (2.2),

F∗
α(U∗; (E, s,H, k)) = ||L∗U∗ − (E, s,H, k)||2α(4.12)

for all (U , p,V, q) ∈ D(L∗), where the weighted norms involve only the equations
corresponding to slack variables s and k. Since s and k are slack variables of the
original system, we may assume that s = 0 and k = 0. Then the corresponding weak
form is as follows: Find U∗ ∈ D(L∗) satisfying

〈L∗U∗,L∗V∗〉α = 〈(E, 0,H, 0),L∗V∗〉α = 〈L(E, 0,H, 0),V∗〉 = 〈F,V∗〉

for all V∗ ∈ D(L∗), where 〈·, ·〉α = 〈Jα·, Jα·〉 with Jα the diagonal matrix Jα =
diag[ 1, 1, 1, rα, 1, 1, 1, rα ]. As an important step in achieving the goal of this
paper, we show that there exists an H1-sequence, {Un}, satisfying the following.
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Theorem 4.15. Assume α > 1 − λ. For given U = (E, s,H, k) ∈ L2(Ω)8, there
exists a sequence Un ∈ D(L∗) ∩H1(Ω)8 such that

||L∗Un − U||α −→ 0(4.13)

as n −→ ∞.
Proof. By surjectivity of L∗, there exists U∗ = (U , p̃,V, q̃) ∈ D(L∗) such that

L∗U∗ = U. From Theorems 4.12 and 4.13, we have Un ∈ D(L∗)∩H1(Ω)8 satisfying

(4.14)

∇× Vn − σ∇q = E + σU = ∇× V − σ∇q̃ , ||∇ · Vn − a1p̃− s||0,α −→ 0,

∇× Un − μ∇p = H − μV = ∇× U − μ∇p̃ , ||∇ · Un + a2q̃ − k||0,α −→ 0,

as n goes to infinity, where Un = (Un, p,Vn, q) and a1, a2 are nonnegative constants.
First, consider the case 1 − λ < α < 1. By substituting L∗U∗ = U into (4.14) and
using Lemmas 4.2 and 4.5, we have the first inequality in the following equation:

||L∗Un − U||2α ≤ c
(
||∇ × (Un − U)||2 + ||∇ · (Un − U)||20,α

+ ||∇ × (Vn − V)||2 + ||∇ · (Vn − V)||20,α
)

≤ c (||∇ · (Un − U)||20,α + ||∇ · (Vn − V)||20,α),

where c = c(Ω, μ, σ, α). Boundary conditions and orthogonality properties provide
the second inequality in the above. By (4.14), the right-hand side converges to 0.

Now consider α ≥ 1. Since |r| < 1, it is easy to see that, when α1 ≥ α2,
|| · ||0,α1

≤ || · ||0,α2 . Therefore, for α ≥ 1,

||L∗Un − U||α ≤ ||L∗Un − U||1−ε

for ε > 0. Hence, the result holds.
Corollary 4.16. Let U∗ = (U , p̃,V, q̃) ∈ D(L∗) satisfying L∗U∗ = U and let

Un = (Un, p,Vn, q) ∈ D(L∗) ∩ H1(Ω)8 satisfying (4.14), where Un = u + ∇δnφ and
Vn = v + ∇δnψ with δn defined as in (4.8), u ∈ H1(Ω)3 ∩ DA, v ∈ H1(Ω)3 ∩ DB,
φ ∈ H1(Ω)/R, and ψ ∈ H1

0 (Ω) from Theorems 4.10 and 4.11. Then

U = u + ∇φ, V = v + ∇ψ, p̃ = p, and q̃ = q.

Proof. By taking divergence on the first and third equations in (4.14), we obtain
p̃ = p and q̃ = q. Then, we have

0 = ∇× (U − Un) = ∇× (U − (u + ∇δnφ)) = ∇× (U − (u + ∇φ)),

0 = ∇ · U + a2q − k = ∇ · U − (∇ · u + Δφ) = ∇ · (U − (u + ∇φ)),

which imply U = u + ∇φ. Similarly, V = v + ∇ψ.
The singularity on the boundary implies that the solution, U∗ ∈ D(L∗), of

L∗U∗ = U is not in H1. However, we have shown that there is an H1-sequence,
Un, satisfying (4.13). This allows us to use the standard H1-conforming finite ele-
ments, as we demonstrate in section 7. In the next theorem we establish the coercivity
and continuity of F∗ in the partially weighted norm.
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Theorem 4.17. If (U , p,V, q) ∈ D(L∗), then there exist c and C such that

c(||U|| + ||∇ × U|| + ||rα∇ · U|| + ||p||1 + ||V|| + ||∇ × V|| + ||rα∇ · V|| + ||q||1)

≤ ||L∗(U , p,V, q)||α

≤ C(||U|| + ||∇ × U|| + ||rα∇ · U|| + ||p||1 + ||V|| + ||∇ × V|| + ||rα∇ · V|| + ||q||1),

where 1 − λ < α < 1.
Proof. It is clear that ||rα∇·U||+ ||rα∇·V|| ≤ ||L∗(U , p,V, q)||α. By Lemmas 4.2

and 4.5, and the Poincaré inequality, it is enough to show that

||∇ × U|| + ||∇p|| + ||∇ × V|| + ||∇q|| ≤ c||L∗(U , p,V, q)||α.

Using orthogonality and Hölder’s inequality, we can easily show the lower inequal-
ity. The upper inequality follows by the triangle inequality. For more details, see
[17].

5. Scaling in FOSLL*. In this section, we briefly introduce scaling in FOSLS
and FOSLL*. From [18], it is known that using a scaling in FOSLS and FOSLL*
sometimes has computational advantages. Here, we are particularly interested in
scaling with

√
μ and

√
σ since it gives orthogonality between ∇× and ∇ in FOSLL*.

The eddy current equations (3.1) can be rewritten as

LsU =

⎡
⎢⎢⎢⎣

−
√
σI 0 ∇× 1√

μ −∇ 1√
μ

0 − 1√
σ
a1 ∇ · √μ 0

∇× 1√
σ

−∇ 1√
σ

√
μI 0

∇ ·
√
σ 0 0 1√

μa2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

√
σE√
σs√
μH√
μk

⎤
⎥⎥⎦ = F.(5.1)

Then, the corresponding dual problem has the form

L∗
sU

∗ =

⎡
⎢⎢⎢⎣

−
√
σI 0 1√

σ
∇× −

√
σ∇

0 − 1√
σ
a1

1√
σ
∇· 0

1√
μ∇× −√

μ∇ √
μI 0

1√
μ∇· 0 0 1√

μa2

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

U
p
V
q

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

√
σE√
σs√
μH√
μk

⎤
⎥⎥⎦ .(5.2)

FOSLL* for the scaled system minimizes the dual functional F∗
s (U∗;U) = ||L∗

sU
∗−

U||2 in the weak sense as follows: Find U∗ ∈ D(L∗) that satisfies

〈L∗
sU

∗,L∗
sV

∗〉 = 〈U,L∗
sV

∗〉 = 〈LsU,V∗〉 = 〈F,V∗〉(5.3)

for all V∗ ∈ D(L∗). To gain insight into the effectiveness of the scaled approach in
FOSLL*, we observe the formal normal, LsL∗

s, of (5.3):

⎡
⎢⎢⎢⎣

σI+∇×1
μ∇×−∇ 1

μ∇· 0 0 σ∇−∇a2

μ

0
a2
1

σ −∇ · μ∇ ∇ · μ− a1

σ ∇· 0
0 ∇a1

σ − μ∇ ∇×1
σ∇×−∇ 1

σ∇ · +μI 0
a2

μ ∇ · −∇ · σ 0 0
a2
2

μ −∇ · σ∇

⎤
⎥⎥⎥⎦ .

Compare the above to the formal normal, LL∗, of the original system (3.1). The
formal normal of the scaled system provides two small systems, each totally separated,
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corresponding to the variables (U , q) and (V, p), respectively:[
σI + ∇× 1

μ∇×−∇ 1
μ∇· σ∇−∇a2

μ
a2

μ ∇ · −∇ · σ a2
2

μ −∇ · σ∇

] [
U
q

]
=

[
0
0

]
(5.4)

and [
μI + ∇× 1

σ∇×−∇ 1
σ∇· ∇a1

σ − μ∇
∇ · μ− a1

σ ∇· a2
1

σ −∇ · μ∇

] [
V
p

]
=

[
μHold

0

]
.(5.5)

The weak form also separates and we solve two smaller systems. For the eddy current
problem, it is clear that (U , q) = (0, 0). For more general formulations, both systems
might have a nontrivial solution.

Remark 5.1. If σ, μ are constants and a1 = a2 = σ ·μ, then (5.5) is reduced to[
μI + 1

σ (∇×∇×−∇∇·) 0
0 σμ2 − μ∇ · ∇

] [
V
p

]
=

[
μHold

0

]
.

Clearly, p = 0 and V satisfies

μV +
1

σ
∇×∇× V − 1

σ
∇∇ · V = μHold.

The above equation is the same as a modified Galerkin formulation for the magnetic
field, H. In the context of constant σ and μ, using FOSLL* with the square root scal-
ing described in (5.1) and certain values for a1, a2 is equivalent to solving the original
problem (2.6) by eliminating the electric field, E, and using a modified Galerkin for-
mulation on H. However, it is the case of nonconstant σ and μ and the presence of
reentrant edges that we consider in this paper.

Remark 5.2. In the modified FOSLL*, the formal normal of (5.3) is⎡
⎢⎢⎢⎢⎣

σI+∇×1
μ∇×−∇ r2α

μ ∇· 0 0 σ∇−∇ r2αa2

μ

0
r2αa2

1

σ −∇· μ∇ ∇ · μ− r2αa1

σ ∇· 0

0 ∇ r2αa1

σ − μ∇ μI + ∇×1
σ∇×−∇ r2α

σ ∇· 0
r2αa2

μ ∇ · −∇ · σ 0 0
r2αa2

2

μ −∇· σ∇

⎤
⎥⎥⎥⎥⎦ .

Because of the weighting terms, there is no simple way to further decouple the equa-
tions through a choice of a1 and a2. The term in the (3,3) position in the above is
similar to the formal normal associated with the partially weighted modified Galerkin
described in [10].

6. Discrete approximation. Let Th be a partition of the domain Ω = ∪K∈Th
K,

and each finite element K ∈ Th be a closed subset of Ω with h := max{hK :=
diam(K) : K ∈ Th}. Assume that the partition Th is regular so that we can choose a
finite element basis that is conforming and satisfies the approximation property (see
[6]). We also assume that there exists a constant, ρ, satisfying h ≤ ρhK . Define by
Pk the space of all polynomials of degree ≤ k with respect to each variable. Let the
standard polynomial interpolation operator, Ih ∈ L((H1(Ω))8; (H1(Ω))8), be such
that Ihp = p for all p ∈ (P1)

8, and let the finite dimensional subspace, Wh ⊂ D(L∗)∩
H1(Ω)8, have Ih(D(L∗) ∩H1(Ω)8 ∩ C0(Ω)) ⊂ Wh.
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From section 3, we know that, for given U ∈ L2(Ω)8, there exists the solution
U∗ ∈ D(L∗) satisfying L∗U∗ = U, that is,

U∗ = arg min
X∈D(L∗)

||L∗X − U||α.(6.1)

Here, we minimize in (6.1) over a finite-dimensional subspace Wh which yields the
corresponding weak form as follows: Find Uh ∈ Wh satisfying

〈
L∗Uh,L∗Xh

〉
α

=
〈
U,L∗Xh

〉
α

=
〈
(0, 0, μHold, 0),Xh

〉
(6.2)

for all Xh ∈ Wh. By computing L∗Uh, we obtain the approximations for E and H:

Eh = −σUh + ∇× Vh − σ∇q̃h, Hh = ∇× Uh − μ∇p̃h + μVh,(6.3)

where Uh =
(
Uh, p̃h,Vh, q̃h

)
.

The following theorem provides the L2-error estimates for the solution E and H
of (2.6) with the approximation L∗Uh. Here, we use Theorem 4.15 to accomplish the
L2-error estimates by adopting the standard finite element approximation property.
Vectors (E, s,H, k), (U , p,V, q), (Un, p,Vn, q), and (Uh

n , p
h,Vh

n , q
h) are abbreviated to

U, U∗,Un, and Uh
n, respectively.

Theorem 6.1. Assume U ∈ D(L) and α > 1−λ. Let U∗ = (U , p,V, q) ∈ D(L∗)
such that L∗U∗ = U. Then, Corollary 4.16 leads the decompositions U = u+∇φ and
V = v + ∇ψ. Assume u,v ∈ H1+η1(Ω)3 and p, q ∈ H1+η2(Ω) for some η1, η2 > 0. If
Uh ∈ Wh satisfies (6.2), then there exists a constant c such that

||U − L∗Uh||2α ≤ c h2τ
(
|u|21+η1

+ |v|21+η1
+ ||φ||23,1+β + ||ψ||23,1+β + |p|21+η2

+ |q|21+η2

)
for any τ < min

{
η1, η2,

α−1+λ
α+1

}
and some β ∈ (1 − λ, 1), β < α.

Proof. Let Un ∈ D(L∗) ∩H1(Ω)8 satisfying Theorem 4.15, and let

Uh
n = (Uh

n , p
h,Vh

n , q
h) = arg min

Xh
n∈Wh

||L∗Un − L∗X h
n ||α.(6.4)

By the triangle inequality,

||U − L∗Uh||2α ≤ 3
(
||L∗U∗ − L∗Un||2α+ ||L∗Un − L∗Uh

n||2α+ ||L∗Uh
n − L∗Uh||2α

)
.

From Theorems 4.12, 4.13, and 4.15, we have

||U − L∗Un||2α < c n−2(α−β)
(
||φ||22,β + ||ψ||22,β

)
.(6.5)

The linearity of L∗ and the optimality on the finite-dimensional space imply

||L∗Uh
n − L∗Uh||2α =

〈
L∗(Uh

n− Un+ Un− U∗+ U∗− Uh),L∗(Uh
n− Uh)

〉
α

≤ ||L∗Un − L∗U∗||α ||L∗Uh
n − L∗Uh||α.(6.6)

Thus, (6.5) and (6.6) yield

||U − L∗Uh||2α ≤ c n−2(α−β)
(
||φ||22,β + ||ψ||22,β

)
+ c ||L∗Un − L∗Uh

n||2α.(6.7)
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Since Uh
n satisfies (6.4), by Céa’s lemma, ||L∗Un−L∗Uh

n||2α ≤ c ||L∗Un−L∗IhUn||2α.
Using the triangle inequality, we have

||L∗Un − L∗IhUn||2α ≤ c
(
||Un − IhUn||2 + ||Vn − IhVn||2

+ ||∇ × (Un − IhUn)||2 + ||∇ · (Un − IhUn)||20,α + ||∇(p− Ihp)||2

+||∇ × (Vn − IhVn)||2 + ||∇ · (Vn − IhVn)||20,α + ||∇(q − Ihq)||2
)
.(6.8)

First, we consider Un-terms. By [12], we have

||Un − IhUn||2 + ||∇ × (Un − IhUn)||2 + ||∇ · (Un − IhUn)||20,α

≤ c||∇(Un − IhUn)||2 = c
∑

K∈Th

||∇(Un − IhUn)||2K ,

where || · ||K means an integration over K. Since φ satisfies{
∇ · ∇φ = −∇ · u − a2q̃ + k in Ω,

φ = 0 on ∂Ω,
(6.9)

and ∇ · u + a2q̃ − k ∈ H1
β(Ω) ⊂ H1

1+β(Ω), the solution, φ, of (6.9) is in H3
1+β(Ω) (see

[19]). From Theorems 4.12 and 4.15, Un is decomposed of u+∇δnφ, where δn is defined
as in (4.8). The fact that φ ∈ H3

1+β(Ω) and the definition of δn yield δnφ ∈ H3(Ω).
On each element K, we use the triangle inequality and standard interpolation error
estimates to obtain

||∇(Un − IhUn)||2K ≤ c
(
||∇(u − Ihu)||2K + ||∇(∇φn − Ih∇φn)||2K

)
≤ c h2η1 |u|21+η1,K + c h2|φn|23,K .

Since δn = 0 when r ≤ (1/2n) and δ′n = 0 when r �∈ (1/2n, 1/n),

∑
K

|φn|23,K = |φn|23 ≤ c

∫
|δ′′′n φ|2 + |δ′′n∇φ|2 + |δ′n∇2φ|2 + |δn∇3φ|2dΩ

≤ c

∫∫∫ 1
n

1
2n

|n3φ|2 + |n2∇φ|2 + |n∇2φ|2rdrdθdz + c

∫∫∫ R(θ)

1
2n

|∇3φ|2rdrdθdz

≤ cn2(1+β)

(∫∫∫ 1
n

1
2n

2∑
k=0

|rβ−k∇2−kφ|2dΩ +

∫∫∫ R(θ)

1
2n

|r1+β∇3φ|2dΩ
)
≤ cn2(1+β)||φ||23,1+β .

Thus, we have ||∇(Un − IhUn)||2 ≤ c
(
h2η1 |u|21+η1

+ h2n2(1+β)||φ||23,1+β

)
. Choose n

such that 1
2n <

√
2h

1
α+1 < 11

20n to balance with (6.7). Then, the optimal choice of β

is 1 − λ + ε and this yields hn1+β = h
α−1+λ
α+1 −ε. Then,

||∇(Un − IhUn)||2 ≤ c
(
h2η1 |u|21+η1

+ h2α−1+λ
α+1 −ε||φ||23,1+β

)
.

The above calculation can be applied to Vn analogously. For p and q, the standard
error estimates yields ||∇(p− Ihp)||2 + ||∇(q− Ihq)||2 ≤ ch2η2(|p|21+η2

+ |q|21+η2
).

Corollary 6.2. If μ, σ are constants, then η1, η2 are any real values < λ.
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Proof. If μ and σ are constants, then ∇×∇× (u +∇φ) ∈ L2(Ω), where u and φ
are from the proof of Theorem 6.1. Also, ∇·(u+∇φ) = 0 and n×(u+∇φ) = 0 on ∂Ω.
Thus, by [9], we have u ∈ H1+η1(Ω)3 for any η1 < λ. The variable p is the solution of
the Poisson equation with a Dirichlet boundary condition. Thus, p ∈ H1+η2(Ω), where
η2 < λ. Similarly, we have v ∈ H1+η1(Ω)3 and q ∈ H1+η2(Ω) for any η1, η2 < λ.

Remark 6.3. In [10], error estimates in the DAα
-norm (see (4.9)) with higher reg-

ularity in E were developed. They used H1-conforming finite element spaces which
include ∇Φh, where Φh is an almost affine family of C1 elements and has good ap-
proximation properties in the H2

β-norm. In this paper, we use H1-conforming finite

elements to approximately solve the problem and develop L2-error estimates. Our
approximation to the electric field is of the form Eh = −σUh +∇×Vh−σ∇q̃h, where
Uh,Vh, and q̃h are chosen from H1-conforming finite element spaces, which means we
explicitly present the solution as a combination of such terms, and thus, do not need
to construct special finite element spaces.

In the following section, we present several numerical examples. The results show
clearly that the convergence rate is related to α values as well as to the regularity of
the dual solution in agreement with the above theorem.

7. Numerical results. In this section, we report on numerical results of apply-
ing the modified FOSLL* method to problem (3.1). We choose the prototype domain
described by

Ω = (−0.5, 0.5)3\{(x, y, z)|0 ≤ x ≤ 0.5,−0.5 ≤ y ≤ 0,−0.5 < z < 0.5}.

The domain has a reentrant edge along the z-axis with interior angle 3π
2 . Thus, we

expect the solution to have a singularity of the form r−
1
3 , where r is the distance

to the z-axis. The square root scaling described in section 5 was used for all three
tests. This requires solving for only four dependent variables, denoted by (V, p),
since the other four variables (U , q) are known to be zero. Trilinear finite elements
were used for all variables. In this context, we minimize ||L∗X h − (E, 0,H, 0)||α
over X h = (Uh, ph,Vh, qh) in the finite-dimensional subspace Wh, holding (Uh, qh) =
(0, 0), in order to get the approximation, Uh, for the dual solution, U∗, of (3.5).
Then, we compute L∗Uh as the approximation for (E, 0,H, 0) and observe the L2-
errors ||E − Eh|| and ||H − Hh||.

The software package FOSPACK [22] was used to construct the discrete sys-
tems and to solve them by a conjugate gradient iteration preconditioned by algebraic
multigrid (AMG) using W(1,1)-cycles. Problems with given exact solutions were con-
structed so that the error could be monitored. The constants a1 and a2 were fixed at
0. However, the results are similar to those achieved when they are fixed as positive
constants. A residual reduction 10−10 was used as the AMG W-cycle stopping crite-
rion. While this level of error is excessive in practice, we employ it here to remove
algebraic error from the calculation of the convergence of the discrete solution.

Example 7.1. We choose the exact solutions E and H to be

E =
1

σ
∇× H and H = ( ∂yg, − ∂xg, 0 ),

where

g = δ(r)r
2
3 sin

(
2

3
θ

)
sin(2πz) and δ(r) =

{
1, r ≤ 0.25,
0, r ≥ 0.375
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Table 7.1

The L2-norm of the errors and observed convergence rates, τ , for Example 7.1 (×10−1 means
that the values in the table divide by 10), ‖E‖ ∼ 10.290, ‖H‖ ∼ 0.55727.

||E − Eh||
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 4.67 τ 4.65 τ 4.64 τ 4.64 τ 4.63 τ
1/16 3.91 0.26 3.84 0.28 3.80 0.29 3.79 0.29 3.79 0.29
1/32 2.16 0.85 1.97 0.96 1.91 0.99 1.89 1.00 1.88 1.01
1/64 1.45 0.57 1.08 0.86 1.00 0.94 0.97 0.96 0.96 0.97

||H − Hh|| (×10−1)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 2.32 τ 2.18 τ 2.11 τ 2.06 τ 2.02 τ
1/16 1.74 0.41 1.36 0.68 1.11 0.93 2.06 1.06 2.02 1.11
1/32 1.57 0.16 0.92 0.56 0.55 1.00 0.45 1.14 0.41 1.19
1/64 1.52 0.04 0.69 0.42 0.31 0.85 0.23 0.94 0.21 0.94

0 2/3 1 4/3 2 3 4 5 6
0  

0.5

2/3

1

α
 

 

||E−Eh||

||H−Hh||
(α−1/3)/(α+1)

τ

Fig. 7.1. Finite element convergence rate, τ , as a function of α for Example 7.1.

Table 7.2

AMG convergence factors for Example 7.1.

α = 0 α = 2/3 α = 4/3 α = 2 α = 3 α = 4 α = 5 α = 6
1/8 0.03 0.03 0.04 0.05 0.05 0.06 0.07 0.07
1/16 0.03 0.05 0.09 0.14 0.28 0.23 0.20 0.20
1/32 0.03 0.17 0.20 0.29 0.33 0.37 0.42 0.44
1/64 0.03 0.14 0.32 0.40 0.44 0.51 0.54 0.54

with r =
√
x2 + y2, θ = arctan( yx ), and δ(r) ∈ C3 cut-off function. Then, the solution

satisfies type II boundary conditions. We fix the μ = 1 and σ = 1.
Table 7.1 displays the L2-errors of E and H. The rate, τ , represents the value

of the observed convergent factor, hτ , when the mesh decreases from h to h/2. As
shown in Table 7.1, standard FOSLL* (α = 0) gives poor convergence. The declines
in convergence factors are dramatic in this case. This is to be expected because the
exact dual solutions U and V are not in H1, but rather in Hγ for any γ < 2

3 . The
results in Table 7.1 for α > 1−λ = 1

3 show that partial unweighting of the functional
produces improved convergence in all terms of the functional. By Theorem 6.1, the

L2-errors of E and H are expected to exhibit O(hτ ), for any τ < min{ 2
3 ,

α− 1
3

α+1 } (dashed

line in Figure 7.1) as long as α > 1
3 , that is, the bound τ , on the convergence rate

stays at 2
3 for α > 3. In fact, the results show better convergence than expected.

In Figure 7.1, we compare convergence rates for the L2-errors in E and H while the
mesh moves from 1/32 to 1/64 with more α values than are showed in Table 7.1. We
observe in Table 7.2 that increasing α results in an increasing convergence factor for



FOSLL* FOR 3-D EDGE SINGULARITIES 807

Table 7.3

The L2-norm of the errors and observed convergence rates, τ , for Example 7.2, ‖E‖ ∼
1.9302, ‖H‖ ∼ 0.55727.

||E − Eh|| (×10−1)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 9.56 τ 9.27 τ 9.13 τ 9.04 τ 8.96 τ
1/16 8.57 0.16 7.75 0.26 7.34 0.31 7.20 0.33 7.14 0.33
1/32 6.77 0.34 5.06 0.62 4.49 0.71 4.26 0.76 4.04 0.82
1/64 6.20 0.13 3.77 0.43 3.07 0.55 2.70 0.66 2.38 0.76

||H − Hh|| (×10−1)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 2.34 τ 2.24 τ 2.18 τ 2.14 τ 2.09 τ
1/16 1.83 0.36 1.60 0.48 1.38 0.65 1.22 0.81 1.09 0.94
1/32 1.71 0.10 1.33 0.26 0.93 0.58 0.68 0.84 0.52 1.05
1/64 1.68 0.02 1.18 0.18 0.64 0.53 0.39 0.81 0.26 0.98

0 2/3 1 4/3 2 3 4 5 6
0  

0.5

2/3

1

α
 

 

||E−Eh||

||H−Hh||
(α−1/3)/(α+1)
τ

Fig. 7.2. Finite element convergence rate, τ , as a function of α for Example 7.2.

the AMG algorithm. This behavior is dependent on the particular AMG algorithm
that was used in the test. An improved AMG would change the picture.

Example 7.2. In this example, we take a smooth function for the coefficient σ.
Let E and H be the same as in Example 7.1 and let μ = 0.5 and σ = 100(x2+y2)+1.

Table 7.3 shows the L2-errors of E and H and the convergence rates. More
convergence rates corresponding to α values when the mesh moves from 1/32 to 1/64
appear in Figure 7.2. Note that the observed convergence rates are slightly worse
than the ones in Example 7.1. The AMG convergence factor behaves essentially the
same as in the first example.

In the next example, we examine the case having discontinuous coefficients as
well as a reentrant edge on the boundary.

Example 7.3. Let E and H be the same as in Example 7.1. Let μ = σ = 1 if
r =

√
x2 + y2 ≤ 0.25 and μ = 25, σ = 100 otherwise.

In this example, we need to be careful about the regularity of E and H. Since μ
and σ have jumps at r = 0.25, E is not in H(∇×) but in H(∇× σ), and H is not in
H(∇ · μ) but in H(∇·). E and H do not satisfy the eddy current equations, but are
useful as a test to observe how modified FOSLL* would work for a problem with both
discontinuous coefficients and a reentrant edge. Numerical results in Table 7.4 show
great convergence with modified FOSLL* approximation even though the problem
has both nongrid-aligned discontinuities in the coefficients and a boundary singularity.

Convergence rates of the L2-errors for E and H are greater than both of 2
3 and

α− 1
3

α+1
for α > 3. Figure 7.3 shows convergence rates for more values of α using grid size
h = 1/64.
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Table 7.4

The L2-norm of the errors and observed convergence rates, τ , for Example 7.3, ‖E‖ ∼
8.1056, ‖H‖ ∼ 0.55727.

||E − Eh||
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 2.37 τ 2.35 τ 2.34 τ 2.34 τ 2.34 τ
1/16 2.16 0.14 2.10 0.16 2.08 0.17 2.07 0.18 2.07 0.18
1/32 1.19 0.86 1.06 0.99 1.02 1.02 1.02 1.03 1.01 1.03
1/64 0.82 0.54 0.59 0.83 0.55 0.89 0.54 0.91 0.53 0.92

||H − Hh|| (×10−2)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 20.7 τ 20.3 τ 20.1 τ 19.9 τ 19.8 τ
1/16 11.9 0.80 10.4 0.97 9.60 1.07 9.23 1.11 8.99 1.14
1/32 9.35 0.35 6.22 0.74 4.89 0.97 4.40 1.07 4.09 1.14
1/64 9.02 0.05 4.77 0.38 3.17 0.62 2.53 0.80 2.17 0.92

0 2/3 1 4/3 2 3 4 5 6
0  

0.5

2/3

1

α
 

 

||E−Eh||

||H−Hh||
(α−1/3)/(α+1)
τ

Fig. 7.3. Finite element convergence rate, τ , as a function of α for Example 7.3.

Table 7.5

AMG convergence factors for Example 7.3.

α = 0 α = 2/3 α = 4/3 α = 2 α = 3 α = 4 α = 5 α = 6
1/8 0.64 0.66 0.66 0.63 0.66 0.66 0.66 0.65
1/16 0.68 0.67 0.68 0.67 0.66 0.67 0.66 0.68
1/32 0.67 0.68 0.68 0.66 0.67 0.66 0.68 0.68
1/64 0.63 0.65 0.65 0.65 0.66 0.67 0.67 0.67

The AMG convergence factors are slightly worse, but still quite acceptable, for
discontinuous coefficients, as indicated in Table 7.5. Again, we believe that an im-
proved AMG algorithm may overcome this difficulty.

8. Conclusion. In this paper, we developed a FOSLL* method with a partially
weighted norm for the eddy current approximation to Maxwell’s equations on a three-
dimensional domain with a reentrant edge. We have shown the existence of an H1-
sequence converging to the solution of the eddy current problem in the partially
weighted functional norm. This allows accurate approximation using standard H1-
conforming finite element spaces. An L2-error estimate was established that depends
continuously on the weight parameter, α. Numerical tests support our theory. In
the future, we will apply our theory to other problems, like full Maxwell’s equations,
elasticity equations, and Navier–Stokes equations. Also, the reentrant corners (e.g.,
the Fichera cube) will be considered. We don’t anticipate the results, but we believe
that our theory can be easily extended to these problems.
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