
FOSLoSophy
Informal assessment of

First-Order System Least Squares (FOSLS)

As with any new development that breaks from convention, the least-squares ap-
proach can be easily misunderstood. Both understatement and overstatement are
natural tendencies. Newcomers are quick to recognize the subtlety of this methodol-
ogy, which is true enough, but it is easy to misjudge its complexity and its potential.
It seems at first glance to demand more computational resources and to require in-
creased regularity and smoothness, but these impressions are usually dispelled on
closer inspection. On the other hand, as promising as FOSLS seems to the relatively
few who are working with it, this methodology is not about to completely replace any
other approach. It is simply a new tool in the struggle for effective solution of partial
differential equations. But it is compelling in its ability to yield uniformly fast and
accurate solvers for some applications that involve high Reynolds flow, linear elastic-
ity approaching the incompressible limit, and highly indefinite Helmholtz problems,
for example.

In any event, the purpose of this note is to move towards a better understanding
of where the least-squares approach fits into the field of computational mathematics.
We assume that the reader is familiar with basic FOSLS concepts (see the end of
this document for relevant sources), but not necessarily with its implications or basic
philosophy. We begin with a general discussion and end with examples that illustrate
various points of this discussion.

One of the main advantages of FOSLS is its formulation of a minimization princi-
ple for problems that have no other natural optimization form. This leads to several
benefits: discretization can be done by Rayleigh-Ritz techniques, which are usually
simpler than Galerkin methods because they need only one type of subspace and
more powerful because they can exploit the optimization structure; analogously, the
only basic choices needed for designing multigrid solvers for FOSLS discretizations
are relaxation and interpolation (other formulations usually also require choices for
restriction and coarse-grid operators); such ‘variational’ multigrid methods are typ-
ically more effective and better supported by theory than non-variational schemes;
heuristics and analysis of discretization can be based on approximation theory instead
of more cumbersome and often misleading approaches like truncation-error analysis;
and the problem is imbued with a sense of optimality, which is important in developing
robust discretizations, especially in the presence of adaptive refinement, singularities
and discontinuities, nonlinearities, and widely varying coefficients. Another advan-
tage, which reflects the primary goal of this methodology, is that FOSLS represents a
top-down systematic approach, with the basic aim of formulating the original problem
so well that the numerical processes (discretization and multigrid solution) becomes
as straightforward and optimal as possible. In this vein, an attempt is made to for-
mulate the functional so that the system variables (e.g., potentials and fluxes) are
essentially decoupled, meaning that the homogeneous form is elliptic and continuous
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(more generally, it is equivalent to a diagonal form of scalar functionals). This allows
essentially separate consideration of each variable in the discretization and multigrid
solution processes. For example, it avoids restrictions like the LBB condition and
the need for staggered grids. When the functional is designed to be fully product
H1 equivalent, then standard discretization and multigrid solution techniques can be
easily and effectively applied. For example, no special ‘stabilization’ techniques like
artificial diffusion or upwinding are needed. Another important attribute is that the
FOSLS functional provides a practical and sharp a posteriori error measure at no
additional cost: the value of the functional provides a measure of both the absolute
and the relative total error for any approximation, no matter how it was obtained.

Of course, these advantages must come at some cost. First, there are more system
variables. For example, a diffusion-convection equation would require four dependent
variables in three-dimensional geometry. On the other hand, this does not necessarily
mean more total scalar unknowns or greater overall computational cost, especially
if FOSLS strengthened accuracy properties lead to smaller or, generally, more easily
solved algebraic systems. It may also be that these new variables are what must
ultimately be computed in practice. A second potential disadvantage is that, to
obtain full product H1 equivalence (equivalence of the homogeneous form to a form of
decoupledH1 scalar norms), the problem must exhibit more regularity and smoothness
than it may possess. However, the H−1 norm versions of FOSLS apply whenever, say,
mixed methods do, and the L2 norm versions generally require only the additional
assumption that the source be in L2; moreover, these difficulties are usually isolated
phenomena, occurring near rough boundaries or internal interfaces that require special
treatment in any case. A third possible disadvantage is that FOSLS formulations are
generally non-conservative, although this can usually be corrected by simple changes
to the basic approach. Finally, development of a fully product-H1-equivalent FOSLS
functional can be tricky: augmenting the system with appropriate equations and
boundary conditions can require much understanding and a bit of luck.

FOSLS H−1 Norm Version

The basic H−1 norm versions of FOSLS involve the simplest reduction of the
original equations to first-order form, an L2 norm applied to the ‘flux’ equations
that define the new variables, and an H−1 norm that in essence preconditions the
‘divergence’ equations (those equations that usually come from higher derivatives in
the original equations) and admits less smoothness (e.g., non-integrable source terms).
As such, this version is usually simpler to define and more generally applicable. In
fact, it applies under the same general framework as do mixed methods. The aim of
H−1 norm versions of FOSLS is to develop a functional whose homogeneous form is
equivalent to a diagonal form, usually involving lower-order norms on the less smooth
variables (e.g., fluxes).

One difficulty with this version of FOSLS stems from the use of these weaker
norms: while they do allow for less smooth data, they also generally require delicate
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balance between the different terms of the functional. This can be seen by realizing
that the primary objective in establishing diagonal equivalence is to show that the off-
diagonal terms are small in some sense: for basic H−1 norm versions of FOSLS, these
terms are usually of the same order as the diagonal terms, so there is little leeway to
scale the terms of the functional differently. For example, applied to the usual elliptic
equation with a diffusion coefficient that varies possibly with jumps and/or large
changes of scale over the region, straightforward application of this version of FOSLS
does not give diagonal equivalence uniformly in coefficient variations, the symptoms
of which are degrading approximation and solver performance. Another aspect of
this sensitivity to scaling is the infeasibility of ‘two-stage’ schemes. For Poisson’s
equation using the L2 version of FOSLS with curl conditions, for example, the flux
equations can be weighted with arbitrarily small positive parameters, without loss of
accuracy or solver speed, because this FOSLS system is almost lower triangular. In
fact, the weights can be set to zero and a proper functional for the fluxes remains,
allowing for a second-stage recovery of the potential. Unfortunately, the intimate
coupling of the divergence and flux terms prevents this in the basic H−1 norm version
of FOSLS. By itself this is not necessarily troublesome, but this sensitivity to scaling
might be limiting in the design of parameter-independent formulations, such as for
high Reynolds number fluid flow problems, where flexibility of scaling is the basic
tool used to devise L2-type FOSLS functionals that are uniformly effective over all
Reynolds number ranges.

An augmented H−1 norm version of FOSLS can be used to overcome these dif-
ficulties. The central idea is that the simple system used in the basic H−1 norm
version is augmented with additional but consistent equations (e.g., when the new
variables are defined in terms of gradients, a ‘curl’ equation might be used to bal-
ance the ‘divergence’ equation). The basic functional is thus augmented by adding
a term involving an appropriate H−1 norm of the additional equations, which tends
to equalize its scales and embue it with the superior properties of the analogous but
better known L2 norm functional discussed next.

FOSLS L2 Norm Version

As with the augmented H−1 norm functional, the L2 norm version involves ad-
ditional equations, but now all terms involve the L2 norm. When it applies, this
version is usually the most effective form of FOSLS. To be sure, H2 regularity is usu-
ally needed theoretically to establish full product H1 equivalence of special L2 norm
formulations, and this can be tricky to achieve. However, no additional regularity is
really needed to apply the L2 norm version: it is generally enough that the source
be in L2. The basic advantage of this version is the stronger sense of well-posedness:
applied to scalar second-order equations, the homogeneous form of the L2 norm func-
tional exhibits (Hdiv ⋂Hcurl) ×H1 equivalence in general, which means local vector
H1 equivalence, and it exhibits full vector H1 equivalence for special forms when the
original problem has increased regularity. This equivalence leads to several other ben-
efits, including optimal performance of standard discretization and multigrid schemes,
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some scale insensitivity that allows ‘two-stage’ methods and design of uniformly well-
posed functionals for many parameter-dependent problems, and lower-order variable
coupling that allows some leeway in the approximation of individual variables. We
attempt to clarify some of these benefits below. Finally, as with most formulations of
this type that admit efficient multigrid solvers, this approach is highly vectorizable
and parallelizable, especially since the individual variables are essentially decoupled
and can therefore be processed simultaneously.

FOSLL∗

An alternative to the H−1 Norm Version

The L2 norm version of FOSLS can be described abstractly as starting with a
preferably first-order equation Lp = f and transforming it to the least-squares equa-
tion L∗Lp = L∗f . Another way to yield a self-adjoint nonnegative-definite system is
to form the equation LL∗q = f . For this to be useful, L and its adjoint L∗ must be
imbued with certain theoretical properties, but a compelling feature of such a FOSLL∗

approach is that the Rayleigh-Ritz solution of LL∗q = f on any subspace is the exact
minimizer of the L2 norm. This follows from noting that the energy functional for
this system differs from the L2 norm of the error by a constant. To see this, let Q be
the exact solution of LL∗q = f and q some approximation to it. Then

< LL∗q, q > −2 < q, f > = < L∗q, L∗q > −2 < q, LL∗Q >
= < L∗q, L∗q > −2 < L∗q, L∗Q >

+ < L∗Q,L∗Q > − < L∗Q,L∗Q >
= ‖L∗(q −Q)‖2 − < L∗Q,L∗Q >
= ‖L∗(q −Q)‖2 − constant.

Illustration
A scalar elliptic equation

For concreteness, consider the convection-diffusion equation

5∗a5 p+ b · 5p = f

with appropriate boundary conditions, which we ignore here in deference to a simpler,
more formal discussion. Here, 5∗ = − 5 ·, a ≥ 1 is a scalar function, and b is a
vector function. A natural H−1 norm FOSLS functional is

F (u, p; f) ≡ || 5∗ u + b · (u/a)− f ||2−1 + ||u/
√
a−
√
a5 p||2,

where || · || is the vector or scalar L2 norm and || · ||−1 is meant in the usual sense
to be the norm induced by the dual of the H1 inner product. Now minimization
of F makes sense under very general smoothness (f ∈ H−1) and regularity (H1)
assumptions. Unfortunately, this form is too sensitive to variations in a. To see this,
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first note that the homogeneous form F (u, p; 0) is generally equivalent to the diagonal
form

G(u, p) ≡ ||u/
√
a||2 + ||

√
a5 p||2,

that is, F (u, p; 0) ∼ G(u, p). This follows easily in the simplest case a = 1 and b = 0,
where the Hessians of F and G are as follows, with I denoting the identity:

F ′′ =

(
I +5L−15 ∗ −5
−5∗ 5∗5

)
and G′′ =

(
I O
O 5∗5

)
.

Here, the representation corresponds to

(
u
p

)
and the operator L is defined by

L = I + diag(5∗5), which comes from the H−1 norm. It is easy to see that the off-
diagonal term −5 is subdominant because E ≡ (I +5L−15∗)−1/2(−5)(5∗5)−1/2

satisfies E∗E << I (i.e., ||E|| << 1). What is important to note is that this bound
is only a consequence of scale, not order: E∗E is less than I in norm, not in order.
For the L2 norm versions of FOSLS introduced below, the corresponding scaled off-
diagonal term E is such that E∗E is of ‘negative order,’ meaning in a loose sense that
the off-diagonal terms of F ′′ involve lower derivatives than do the diagonal terms.
This yields a much stronger sense of diagonal equivalence, which in turn leads to
several additional benefits that are suggested below.

Now, in general, the sharpness of the equivalence F (u, p; 0) ∼ G(u, p) depends
intimately on the magnitude ||

√
a||∞ . For the case a = 0(1

ε
), F (u, 0; 0) is essentially

||5∗ u||2−1 + ε||u||2. For gradient fields (u = 5θ), we have F (u, 0; 0) ∼ (1 + ε)||u||2 ∼
1+ε
ε
G(u, p). For curl fields (u = 5 × v), F (u, 0; 0) ∼ ε||u||2 ∼ G(u, p). Thus, the

equivalence of F to G must feel swings of at least 1+ε
ε

= 1+0(||a||∞). This dependence
can lead to degradation of discretization and algebraic solution techniques.

A choice that appears to avoid this scaling trouble is

F (u, p; f) ≡ || 1√
a

(5∗u + b · (u/a)− f)||2−1 + ||u/
√
a−
√
a5 p||2.

Generally, we can now expect F (u, p; 0) ∼ G(u, p), where this diagonal equivalence
may be uniform in variations in a. However, there is no apparent way to insulate
this equivalence from the deleterious effects of large ||b||. This limitation stems from
the delicate balance needed between the two terms defining F : scaling up the di-
vergence (first) term by a large coefficient would lead to an unfortunate dominance
of this singular term that weakens the decoupling between the components of u and
causes trouble analogous to the large ||

√
a||∞ case, while scaling up the flux (second)

term would severely weaken the decoupling between u and p. Either scaling there-
fore weakens the diagonal form equivalence. Other aspects of this weaker sense of
diagonal equivalence are that care must be taken: in approximating the H−1 norm
(i.e., in discretizing L−1); in discretizing the individual variables (loss of approxima-
tion properties of p in the ||

√
a5 p|| sense would directly degrade the approximation

5



properties of u in the ||u/
√
a|| sense); and in constructing the appropriate algebraic

solver.
By introducing a curl equation into this formulation, we can rebalance the func-

tional terms so that these limitations are easily avoided. Specifically, since u/a is a
gradient at the solution, its curl must be zero. This allows us to redefine the functional
as follows:

F (u, p; f) ≡ ||a5×(u/a)||2−1 + || 5∗ u + b · (u/a)− f ||2−1 + ||u/
√
a−
√
a5 p||2.

There is flexibility in the choice of the H−1 norm of the curl term: while the usual
Laplacian involved in the operator L for the divergence term is appropriate, an oper-
ator involving a (e.g., 5∗a25) might be more appropriate for the curl term. At least
for the case of mildly varying a >> 0, it is possible to make this choice to obtain the
following equivalence property:

F (u, p; 0) ∼ G(u, p) ≡ ||u||2 + ||
√
a5 p||2,

This is especially interesting because it implies that simple iterative methods (like
steepest descent) can obtain optimal convergence without appeal to multileveling
(except, as before, multigrid would be used to evaluate the inverse norms that define
the functional).

Now the only additional requirement for the L2 norm version of FOSLS to be
applied is that f be in L2. The added advantages of this version usually make it the
method of choice when this is the case. Thus, with no additional regularity, we can
replace the H−1 norms in the functional by L2 norms to obtain

F (u, p; f) ≡ ||a5×(u/a)||2 + || 5∗ u + b · (u/a)− f ||2 + ||u/
√
a−
√
a5 p||2,

and we can be assured of the equivalence property

F (u, p; 0) ∼ G(u, p) ≡ ||a5×(u/a)||2 + || 5∗ u||2 + ||u/
√
a||2 + ||

√
a5 p||2,

which is generally uniform in variations in a. With the further assumption of H2

regularity of the original elliptic equation without convection (b = 0), we obtain the
stronger vector H1 uniform equivalence

F (u, p; 0) ∼ G(u, p) ≡ ||diag(5∗5)u||2 + ||u/
√
a||2 + ||

√
a5 p||2.

To understand this equivalence from a heuristic standpoint, consider the simple
case a = 1 and b = 0. Then

F ′′(u, p; 0) =

(
I + diag(5∗5) −5

−5∗ 5∗5

)
andG′′(u, p) =

(
I + diag(5∗5) 0

0 5∗5

)
.

Now the variable coupling is dictated by the scaled off-diagonal term E = (I +
diag(5∗5))1/2(−5)(5∗5)−1/2, which is easily seen to satisfy E∗E << I because
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of scale and order (E∗E is of ‘negative order’). This low order coupling leads to
much more flexibility in terms of fast solvers: for small h, the only coupling between
variables is between smooth components; this implies that the variables are almost
completely decoupled for relaxation purposes on fine grids; and this in turn allows for
the simplest relaxation schemes that process the variables separately. This low-order
coupling also allows for more leeway in the individual approximation of variables: u
can be approximated on a grid whose mesh size is the square root of that for p without
adversely effecting the approximation for p. Finally, it enables separate scaling of the
individual terms in the functional.

Concerning flexibility in functional scaling, consider the following two-stage FOSLS
scheme: start by minimizing the functional obtained by deleting the flux term in F
(this yields the first-stage functional ||a5×(u/a)||2 + ||5∗ u+b · (u/a)− f ||2 that is
well posed in u alone), then recover p by fixing u to be the resulting approximation
and minimizing the flux term (||u/

√
a−
√
a5 p||2) alone for p. It is easy to see that

this two-stage scheme can usually be done with no real degradation in accuracy or
efficiency. However, a more important issue here is the implication that this scale
flexibility has on designing functionals for large Reynolds number flow (i.e., large
||b||). To see this implication in its simplest setting, consider the model case

5∗5 p+ bpx = f

We can reduce this equation by an exponential transformation to the diffusion-only-
type case

−ebx(e−bxpx)x − pyy = f.

Here we assume that x ∈ [0, 1) and b ≥ 0 so that e−bx ∈ (0, 1). With this important
damping scale term in mind, then an appropriate FOSLS functional can be obtained in
a straightforward way, but by carefully ensuring that the flux terms do not dominate
the div-curl (first and second) terms. This leads to
F (u, v, p; f) ≡∫ ∫

[e−bx((ebxu−px)2 +(v−py)2)+(e
bx
2 ux+e−

bx
2 vy+e−

bx
2 f)2 +(e

bx
2 uy−e−

bx
2 vx)

2]dxdy.

It is better now to absorb ebx into u (replace ebxu by u), so that we can in essence ex-
tract out the original transformation, with the aim of making the resulting functional
less sensitive to the precise form of the exponential transformation:
F (u, v, p; f) =∫ ∫

[(u− px)2 + (v − py)2 + (ux − bu+ vy + f)2 + (uy − vx)2]e−bxdxdy.

What we have done is: use a temporary transformation of scale to recast the original
(convection-diffusion) problem to familiar (diffusion) form; then apply FOSLS while
exploiting the flexibility in scale to maintain diagonal equivalence; and then trans-
form back so that the scale appears only as an integral weighting. This approach is
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important because it ensures, under fairly general conditions, that the functional is
uniformly equivalent to its diagonal form:

F (u, v, p; 0) ∼
∫ ∫

[u2 + (ux + bu)2 + u2
y + v2 + v2

x + v2
y + p2

x + p2
y]e
−bxdxdy.

What is essential here is that the equivalence holds equally well for arbitrarily large
Reynolds number b.

Note that the functional obtained by this approach represents a simple modifica-
tion of the basic FOSLS functional

|| 5 ×u||2 + || 5∗ u + b∗u− f ||2 + ||u−5p||2.

The only difference is a weighting of the L2 norm by a term that attenuates expo-
nentially in the streamwise direction into what is typically the boundary layer. This
amounts to damping the influence of errors in all variables in the boundary layer,
which seems appropriate because it has the effect of protecting the rest of the region
(free stream) from contamination caused by the general inability to approximate the
rapidly changing variables there. The functional equivalence to the H1 -like norm
weighted in this way ensures that free-stream discretization accuracy is optimal in
all variables in the unscaled H1 sense, and that multigrid converges with the usual
elliptic speed.

Convection-dominated applications are extremely challenging and subtle in all but
the simplest cases, such as that considered here. It is therefore difficult to know if the
simple approach developed above for constant-coefficient problems can be extended to
those of more practical interest. How general this approach is and how sensitive it is
to the proper choice of scale remains an open question. However, it seems likely that
a reasonable and efficient strategy for local approximation of the weighting (based on
evolving elementwise estimates of the stream direction) could be devised for a fairly
general class of variable-coefficient problems. In fact, even nonlinear convection-
diffusion problems may be amenable to this approach, especially if full multigrid
schemes are used to obtain good initial estimates from coarser grids.

Note that uniform diagonal equivalence means that the overall accuracy and effi-
ciency can be considered separately for each variable. Since the variable coupling is
subdominant in scale and order, then relative accuracy within each variable is assured
in its associated scalar norm.

Two additional benefits come with the least-squares approach: sharp a posteriori
error estimates, enabled because the true minimum value of the functional is known
(zero); and natural treatment of nonconforming finite elements, enabled because the
functional is directly posed in weak form. For either version of FOSLS, the quantities

F (v, q; f) and
F (v, q; f)

F (0, 0; f)

serve as precise measures of the absolute and relative errors in the approximation
(v, q), no matter how it was obtained. Although this assumes that F (·, ·; 0) itself is
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acceptable as an error norm, in any case these quantities provide sharp error esti-
mates in terms of the appropriate Sobolev norm on (v, q), depending on the norm
equivalence established for F (·, ·; 0). The advantages in terms of nonconforming ele-
ments is illustrated by considering a space that violates whatever boundary conditions
might be present. For example, for the convection-diffusion case considered above, the
boundary condition p = g would naturally be replaced by p = gh, where gh is the trace
of some function in the discrete space for p. ( A similar approximation for FOSLS
would be made for u components as well.) Of course, any finite element method must
account for the error induced directly by this approximation, but, for standard finite
elements applied to the original scalar convection-diffusion problem, we would also
have to account for the error in the weak form caused by the new boundary integral
terms that this approximation generates. However, no such terms are generated in
the FOSLS functional since the weak form occurs directly, without integration by
parts, so the only issue here is how well the nonconforming subspace approximates
the original solution. In words borrowed from Gil Strang, no variational crimes have
been committed. Thus, said in finite element terms, Strang’s lemma reduces to the
much simpler Ceá’s lemma for FOSLS functionals.
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Illustration
Stokes

In this section, we develop a least-squares functional for the two- and three-
dimensional Stokes equations, generalized by allowing a pressure term in the con-
tinuity equation. By introducing a velocity flux variable (i.e., the gradient of velocity)
and associated curl and trace equations, ellipticity is guaranteed under full regularity
assumptions in an H1 product norm appropriately weighted by the Reynolds number.
Moreover, the generalized Stokes equations allow us to develop an analogous result
for the Dirichlet problem for linear elasticity, where we obtain the more substantive
result that the estimates that are uniform in the Poisson ratio.

With Ω a bounded, open, connected domain in <n (n = 2 or 3) and ∂Ω its
Lipschitz boundary, our stationary pressure-perturbed form of the generalized Stokes
equations in dimensionless variables is given by

−ν∆u +∇ p = f , in Ω,
∇ · u + δ p = g, in Ω,

u = 0 on ∂Ω,

where: ∆, ∇, and ∇· stand for the Laplacian, gradient, and divergence operators,
respectively; ∆u signifies the n-vector of components ∆ui (i.e., ∆ applies to u com-
ponentwise): ν is the reciprocal of the Reynolds number Re; f is a given vector
function; g is a given scalar function; and δ is a fixed nonnegative constant (δ = 0 for
Stokes, δ = 1 for linear elasticity, and δ is assumed to be bounded uniformly in ν for
the general case). Assume the consistency conditions∫

Ω
g dz =

∫
Ω
p dz = 0.

(For δ = 0, the generalized Stokes equations can have a solution only when g satisfies
this condition, and we are then free to ask that p satisfy it as well. For δ > 0,
in general we have only that

∫
Ω g dz = δ

∫
Ω p dz, but this can be reduced to the

consistency conditions simply by replacing p by p− g
δ

and g by 0.)
Our generalized Stokes equations can be applied to linear elasticity given by{

−µ∆u− (λ+ µ)∇∇ · u = f , in Ω,
u = 0, on ∂Ω,

(0.1)

where u now represents displacements and µ and λ are the (positive) Lamé constants.
We do this by introducing the pressure variable p = −∇ · u, by rescaling f , and by
letting g = 0, δ = 1, and ν = µ

λ+µ
. (A more physical choice for this artificial pressure

would have been p = − λ
2µ
∇· u, since it then becomes the hydrostatic pressure in the

incompressible limit. We chose our particular scaling because it most easily conforms
to the generalized Stokes equations. Also, ν here should not be confused with the
Poisson ratio since we use it in this discussion only in the fluid dynamics sense.)
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Let curl ≡ ∇× denote the curl operator. (Here and henceforth, we use notation
for the case n = 3 and consider the special case n = 2 in the natural way by identifying
<2 with the (x1, x2)-plane in <3. Thus, if u is two dimensional, then the curl of u
means the scalar function

∇×u = ∂1u2 − ∂2u1,

where u1 and u2 are the components of u.) The following identity is immediate:

∇× (∇×u) = −∆u +∇ (∇ · u).

(For n = 2, this dentity is interpreted as

∇⊥ (∇×u) = −∆u +∇ (∇ · u),

where ∇⊥ is the formal adjoint of ∇× defined by

∇⊥q =

(
∂2q
−∂1q

)
.)

Below, we define a new independent variable as the n2-vector function of gradients
of the ui, i = 1, 2, ..., n. It is convenient to view the original n-vector functions as
column vectors and the new n2-vector functions as either block column vectors or
matrices. Thus, given

u =


u1

u2
...
un


and denoting ut = (u1, u2, ..., un), then an operator G defined on scalar functions
(e.g., G = ∇) is extended to n-vectors componentwise:

Gut = (Gu1, Gu2, ..., Gun)

and

Gu =


Gu1

Gu2
...

Gun

 .
If Ui ≡ Gui is a n-vector function, then we write the matrix

U ≡ Gut = (U1, U2, ..., Un)

=


U11 U12 · · · U1n

U21 U22 · · · U2n
...

...
. . .

...
Un1 Un2 · · · Unn

 .

11



We then define the trace operator tr according to

trU =
n∑
i=1

Uii.

If D is an operator on n-vector functions (e.g., D = ∇×), then its extension to
matrices is defined by

DU = (DU1, DU2, · · · , DUn).

When each DUi is a scalar function (e.g., D = ∇·), we view the extension as a
mapping to column vectors, so we use the convention

(DU)t =


DU1

DU2
...

DUn

 .
We also extend the tangential operator n× componentwise (n denotes the outward
unit normal on ∂Ω):

n×U = (n×U1, n×U2, · · · , n×Un).

Finally, inner products and norms on the matrix functions are defined in the natural
componentwise way, e.g.,

‖U‖2 =
n∑
i=1

‖Ui‖2 =
n∑

i, j=1

‖Uij‖2.

Introducing the velocity flux variable

U = ∇ut = (∇u1, ∇u2, · · · , ∇un),

then the generalized Stokes system can be recast as the following equivalent first-order
system: 

U−∇ut = 0, in Ω,
−ν (∇ ·U)t +∇ p = f , in Ω,

∇ · u + δ p = g, in Ω,
u = 0, on ∂Ω.

Note that the definition of U, the “continuity” condition ∇ · u + δ p = g in Ω, and
the Dirichlet condition u = 0 on ∂Ω imply the respective properties

∇×U = 0 in Ω, tr U + δ p = g in Ω, and n×U = 0 on ∂Ω.

Then an equivalent extended first-order system is given by

U−∇ut = 0, in Ω,
−ν (∇ ·U)t +∇ p = f , in Ω,
∇tr U + δ∇ p = ∇g, in Ω,

∇×U = 0, in Ω,
u = 0, on ∂Ω,

n×U = 0, on ∂Ω.
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This extended system is what we treat with least squares, although in stages based
on the observation that we can separate it into two essentially well-posed systems:

Stage 1


−ν (∇ ·U)t +∇ p = f , in Ω,
∇tr U + δ∇ p = ∇g, in Ω,

∇×U = 0, in Ω,
n×U = 0, on ∂Ω,

and

Stage 2

{
∇ut = U, in Ω,

u = 0, on ∂Ω.

What we mean by this separation is that Stage 1 can be solved for U and p, and
then Stage 2, with U and p now given, can be solved for u. We are encouraged
to proceed in this two-stage approach because the connections between the stages
(i.e., U and δ p) are differentially of low order compared to the dominant order of
the stages themselves. Besides, the legitimacy of this approach has been established
theoretically and numerically.

To this end, define the respective Stage 1 and Stage 2 functionals by

F1(U, p; f , g) = ‖f + ν (∇ ·U)t −∇ p‖2 + ν2 ‖∇×U‖2 + ν2 ‖∇tr U + δ∇ p−∇g‖2

and
F2(u; U, p, g) = ‖∇ut −U‖2.

We can easily show that F1(U, p; 0, 0) is uniformly equivalent to ν2 ‖U‖2
1 +‖p‖2

1, and
that F2(u; 0) is uniformly equivalent to ν2 ‖u‖2

1. Indeed, F2(u; 0) is the squared H1

semi-norm! The practical implication is that the generalized Stokes equations may
be solved optimally and uniformly in a two-stage process that involves first minimiz-
ing F1(U, p; f , g) over (U, p) ∈ {V ∈ H1(Ω)n

2
: n × V = 0 on ∂Ω} × (H1(Ω)/<),

and then fixing U and minimizing F2(u; U) over u ∈ H1
0 (Ω)n. It is clear that the

accuracy obtained in the first stage for (U, p) is more than enough to achieve similar
accuracy in the second stage for u, and that the second stage can be avoided if veloci-
ties/displacements are not needed. These important practical advantages are a result
of the more general property that the coupling between (U, p) and u is subdominant
in the sense of order of the associated differential operators (i.e., the second-order
normal equations associated with the least-squares principle for the full system have
only first-order differential operators appearing in the off-diagonal blocks connecting
(U, p) and u).

One advantage of FOSLS is the freedom to incorporate equations and boundary
conditions in the functional or to impose them on the space. For example, we can
impose the grad-trace equation ∇tr U + δ∇ p − ∇g by restricting the space to the
subset of variables that satisfy this equation, namely, we just minimize

F1(U, p; f , g) = ‖f + ν (∇ ·U)t −∇ p‖2 + ν2 ‖∇×U‖2

13



over {(U, p) ∈ {U ∈ H1(Ω)n
2

: n×U = 0 on ∂Ω, U11 + U22 + δp = g inΩ}. We can
accomplish this simply by eliminating U22 = g− δp−U11. Note that this formulation
means that conservation is exactly satisfied in the sense of the velocity flux variables.

FOSLS Formal Normal
Informal analysis of Stokes

To understand why the FOSLS functionals are product H1 equivalent, consider
the simple two-dimensional standard Stokes equations with δ = 0 and U22 eliminated.
Then it is straightforward to see that the differential operator for the Euler-Lagrange
equations associated with F1(U, p; f , g) = ‖f + ν (∇ ·U)t − ∇ p‖2 + ν2 ‖∇×U‖2 is
of the form L∗L, where ∗ signifies the operator adjoint and L is given by

L =


ν∂x ν∂y 0 ∂x
−ν∂y 0 ν∂x ∂y
ν∂y −ν∂x 0 0
ν∂x 0 ν∂y 0

 .

This is where the formal part comes in: We simply assume that the boundary condi-
tions allow us to write the adjoint of L as −LT , and we freely exchange the order of
derivatives:

L∗ =


−ν∂x ν∂y −ν∂y −ν∂x
−ν∂y 0 ν∂x 0

0 −ν∂x 0 −ν∂y
−∂x −∂y 0 0

 .
We thus have that

L∗L =


2ν2L 0 0 ν(−∂2

x + ∂2
y)

0 ν2L 0 −ν∂xy
0 0 ν2L −ν∂xy

ν(−∂2
x + ∂2

y) −ν∂xy −ν∂xy L

 ,

where L = −(∂2
x + ∂2

y) is the negative Laplacian. This formal normal has the block
structure (

ν2D −νX
−νX L

)
,

where

D =

 2L 0 0
0 L 0
0 0 L

 and X =

 ∂2
x − ∂2

y

∂xy
∂xy

 .
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The issue now is whether this system is diagonally dominant, that is, whether νX
is small relative to the diagonal. If so, this system operator would clearly be dom-
inated by individual Laplacians, giving the minimization problem the product H1

equivalence we seek. To this end, note that the formal normal is equivalent to(
I −X
−X ∗ I

)
=

(
I 0
0 I

)
−
(

0 X
X ∗ 0

)
,

where X = D− 1
2XL− 1

2 . Our aim now is to show that the spectral radius of the last
cross term here is much less than one, but that spectral radius is just the square
root of the largest eigenvalue of X ∗X , which (continuing with our free reordering
of derivatives) is the square root of the maximum eigenvalue for the generalized
eigenvalue problem (

1

2
(∂2
x − ∂2

y)
2 + 2∂2

xy

)
v = λLv,

which is just
1

2
Lv = λLv.

The maximum eigenvalue of the cross term is thus
√

2
2

, which is indeed less than one
(uniformly so).

FOSLS Myth Demeaners

FOSLS requires too much smoothness. The L2-norm version of FOSLS
generally does require full H2 regularity to achieve product H1 ellipticity, but it
requires no more than mixed methods do if you are willing to settle for Hdiv ∩Hcurl

ellipticity. Moreover, the inverse-norm version of FOSLS achieves ellipticity (albeit
in a lower product Sobolev norm) without requiring full H2 regularity.

Inverse-norm FOSLS is better than the L2-norm FOSLS. The inverse-
norm approach is quite a bit more expensive than the L2-norm approach when they
both apply. The inverse-norm approach has much more complexity–not to mention
its general sensitivity to local changes in the problem that the inverse norm does
not account for. It can yield an O(N) method, but with a much bigger constant.
Just one inverse-norm-preconditioned step can cost about as much as a total solve
using FMG for the L2-norm approach, which typically solves problems to the level
of discretization error in 10-20 total work units. The inverse-norm approach cannot
compete with this usuallyand it also loses the sharp a posteriori error measures that
L2-norm FOSLS readily provides.

FOSLS needs too many variables. First, the FOSLS inverse-norm approach
does not necessarily require extra variables: you can simply eliminate the new vari-
ables by restricting the space to the right subspace. This amounts to just applying an
inverse norm to the original system. Second, these new variables are often the higher
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derivative quantities needed in practice, and seldom do other approaches obtain any-
where near the accuracy for them that FOSLS does. Finally, because it is often more
accurate, FOSLS can typically solves problems using much coarser grids that other
methods require, more than outweighing the typical doubling or so of the cost that
extra variables incur.

FOSLS changes the physical meaning. Applying a least-squares princi-
ple to a first-order system may seem like it converts a hyperbolic equation like
p(x) = f(x), p(0) = 0 to an elliptic problem. In fact, if you ignore boundary condi-
tions, then the Euler-Lagrange equations associated with minimizing F (p) = ‖p−f‖2

(that is, ∇F (p) = 0) is the elliptic-type equation −p′′ = f ′. This relationship is prob-
ably a source of this misconception. The real point is that the boundary conditions
cannot be ignored: translating minF (p) to the Euler-Lagrange equation properly
must incorporate the boundary terms that arise from integration by parts. The real
point is that applying a norm to the defect p − f simply means that you are not
changing the solution or the character of the equation, but rather just articulating
how you measure error in the approximation. A more subtle misconception comes
from how FOSLS may be applied to a convection-diffusion equation. Consider the
simple scalar problem −εp′′(x) + p(x) = f(x), where ε > 0is small. You can ob-
tain uniform performance of standard finite elements and standard multigrid by just
rewriting this equation in the elliptic form (e−εxp′)′ = e−εxf . It is easy to think that
this basic step and its realization in a FOSLS functional may lose the perception that
the original flow is essentially convective outside the boundary layer. Admittedly,
this new elliptic form might require reinterpretation of the roles of convection and
diffusion, and this unfamiliarity could be compounded by reformulating it in func-
tional form. However, the flow is convective only at a certain physical scale, that is,
only when ε/h is negligible, and the exponential rescaling used here really exposes
this aspect of the physics. Close connection to the physics should come naturally as
one gets used to the new FOSLS formulations.

FOSLS uses the wrong norm. Most methods cannot even explicitly say what
norm they are using. Finite differences attempts to use a max norm, but this con-
nection is weakened dramatically by the use of overly conservative truncation error
and stability arguments. The truncation error argument is really an attempt to keep
control (almost never optimality) over the discrete residual, which is like a discrete
H1 error norm for first-order problems or discrete H2 error norm for second-order
problems. However, such estimates relate only very loosely to the L2 error norm via
the inverse of the discrete operator. In any case, it seems misleading to say that
FOSLS is fixated on the H1 norm (or whatever norm FOSLS equivalence is estab-
lished in) because the computational process can simply focus on other objectives.
Just as is commonly done with any other approach, one can ignore the FOSLS norm
and attempt to control other error criteria. For example, an attempt can be made to
reign in the L2 error by refining where the derivatives of the emerging solution are
large. Another possibility is to rescale the functional to emphasize local regions of
importance. For example, FOSLS for convection-dominated flow has obtained uni-
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form performance of the discretization and multigrid solver. This uniform optimality
is obtained by a special functional scaling that achieves uniform equivalence to an
H1 norm that is damped in the boundary layer. Although this is a natural scaling
because the solution tends to be oscillatory in the boundary layer, if more accuracy is
needed there, then the functional can be carefully rescaled to reflect this goal. Mag-
nifying the div-curl functional in the boundary layer by a large constant does not
expose div-curl harmonic error (zero div-curl residuals in the layer) any more than
they are present outside the layer. But one cannot expect to control harmonic error
locally. However, the question that does remain is: How do div-curl and H1 harmonic
errors relate?

Further Information

See the papers (and the references that they cite) available at

htp://amath-www.colorado.edu/appm/faculty/stevem/Home.html
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